Invariant differential operators and characters of the AdS_{4} algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 395995
(http://iopscience.iop.org/0305-4470/39/20/024)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 03/06/2010 at 04:29

Please note that terms and conditions apply.

Invariant differential operators and characters of the AdS $_{4}$ algebra

V K Dobrev
Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria

Received 1 February 2006, in final form 21 March 2006
Published 3 May 2006
Online at stacks.iop.org/JPhysA/39/5995

Abstract

The aim of this paper is to apply systematically to AdS_{4} some modern tools in the representation theory of Lie algebras which are easily generalized to the supersymmetric and quantum group settings and necessary for applications to string theory and integrable models. Here we introduce the necessary representations of the AdS_{4} algebra and group. We give explicitly all singular (null) vectors of the reducible AdS_{4} Verma modules. These are used to obtain the AdS_{4} invariant differential operators. Using this we display a new structure-a diagram involving four partially equivalent reducible representations one of which contains all finite-dimensional irreps of the AdS_{4} algebra. We study in more detail the cases involving UIRs, in particular, the Di and the Rac singletons, and the massless UIRs. In the massless case, we discover the structure of sets of $2 s_{0}-1$ conserved currents for each spin s_{0} UIR, $s_{0}=1, \frac{3}{2}, \ldots$. All massless cases are contained in a one-parameter subfamily of the quartet diagrams mentioned above, the parameter being the spin s_{0}. Further we give the classification of the $s o(5, \mathbb{C})$ irreps presented in a diagrammatic way which makes easy the derivation of all character formulae. The paper concludes with a speculation on the possible applications of the character formulae to integrable models.

PACS numbers: 02.20.Qs, 02.20.Sv, 11.25.Hf

1. Introduction

The AdS/CFT correspondence between gravitational and gauge forces in general states that a bulk supergravity theory resp. closed string theory is equivalent to a Yang-Mills resp. open string theory on the boundary of spacetime (holography). This correspondence is best understood for four-dimensional $N=4$ supersymmetric Yang-Mills, which is dual to supergravity on AdS5, and which can be explained by D3 branes in type IIB superstring theory. It is also important that string theories have conformal symmetry and thus may be
viewed as ultraviolet limits of integrable (but not conformally invariant) models; or the latter may be viewed as deformations, including quantum group deformations, of conformal models. However, much work remains to be done in order to establish analogous results for dimensions $D \neq 4$ and also for deformations of the original anti-de Sitter backgrounds following recent developments in [1-7]. In particular, for $D=3$ we need to develop the representation theory of the AdS_{4} algebra so $(3,2)$ in a formalism that will be suitable for the purposes of the $\mathrm{AdS} / \mathrm{CFT}$ correspondence, supersymmetrizations and q-deformations along the lines of [8-19].

The AdS_{4} algebra $\operatorname{so}(3,2)$ attracted attention very early since it has truly remarkable unitary representations known as singletons, which were first discovered by Dirac in 1963 [20]. These representations have been extensively studied by Fronsdal, Flato and Evans [21-28]. There are two singleton representations, called Di and Rac. In terms of the lowest energy value E_{0} and the spin s_{0}, the Di has $E_{0}=1, s_{0}=1 / 2$ while the Rac has $E_{0}=1 / 2, s_{0}=0$. These representations have remarkably reduced spectrum (weight spaces). Consequently, the singleton field theory has a very large gauge symmetry which enables one to gauge away the singleton fields everywhere except on the boundary of the anti-de Sitter space [27]. Moreover, the direct product of two singletons decomposes into infinitely many massless states of the anti-de Sitter group [25].

However, the above results and the methods applied are not suitable for the envisaged generalizations. Thus, the aim of this paper is to apply systematically some modern tools in the representation theory of Lie algebras [29-31] which are easily generalized to the supersymmetric and quantum group settings [32]. These generalizations will be done in sequel(s) of the present paper taking into account also work done for the AdS_{4} algebra in [33], its superpartners [34], its Kac-Moody counterpart [35], and its quantum group deformation [36]. For $\operatorname{so}(d, 2), d>4$, similar technique was applied in [37].

This paper is organized as follows. In section 2 , we give preliminaries including facts about the $\operatorname{so}(3,2)$ algebra and the group $S O_{0}(3,2)$. In section 3, we adapt the approach of [29] to the current setting introducing the elementary representations (ERs) of $S O_{0}(3,2)$, relating them to the Verma modules over the complexification $\operatorname{so}(5, \mathbb{C})$ of $\operatorname{so}(3,2)$. Then we give the singular (null) vectors of the reducible Verma modules and use them (in the manner of [29]) to obtain the invariant differential operators between the reducible ERs. In section 4, we apply these differential operators to the cases involving UIRs. For the massless case we discover the structure of sets of $2 s_{0}-1$ conserved currents for each spin s_{0} UIR, $s_{0}=1, \frac{3}{2}, \ldots$ Another structure parametrized by the same values of s_{0} is a quartet diagram of partially equivalent reducible ERs involving the massless case for that s_{0}, a massive UIR (of spin $s_{0}-1$) and an ER containing finite-dimensional irrep of dimension $s_{0}\left(4 s_{0}^{2}-1\right) / 3$. In section 5 , we give the classification of the $s o(5, \mathbb{C})$ irreps. This is presented in a diagrammatic way which makes easy the derivation of the character formulae of these irreps which is done in section 6 . Section 6 is concluded with a speculation on the possible applications of the derived character formulae to integrable models.

2. Preliminaries

2.1. Lie algebra

We start with the complexification $\mathcal{G}^{\mathbb{C}}=\operatorname{so}(5, \mathbb{C})=B_{2}$ of the algebra $\mathcal{G}=\operatorname{so}(3,2)$. We use the standard definition of $\mathcal{G}^{\mathbb{C}}$ given in terms of the Chevalley generators $X_{i}^{ \pm}, H_{i}, i=1,2$, by the relations:

$$
\begin{equation*}
\left[H_{j}, H_{k}\right]=0, \quad\left[H_{j}, X_{k}^{ \pm}\right]= \pm a_{j k} X_{k}^{ \pm}, \quad\left[X_{j}^{+}, X_{k}^{-}\right]=\delta_{j k} H_{j} \tag{2.1a}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=0}^{n}(-1)^{m}\binom{n}{m}\left(X_{j}^{ \pm}\right)^{m} X_{k}^{ \pm}\left(X_{j}^{ \pm}\right)^{n-m}=0, \quad j \neq k, \quad n=1-a_{j k} \tag{2.1b}
\end{equation*}
$$

where

$$
\left(a_{j k}\right)=\left(\alpha_{j}^{\vee}, \alpha_{k}\right)=\left(\begin{array}{cc}
2 & -2 \tag{2.2}\\
-1 & 2
\end{array}\right)
$$

is the Cartan matrix of $\mathcal{G}^{\mathbb{C}}, \alpha_{j}^{\vee} \equiv \frac{2 \alpha_{j}}{\left(\alpha_{j}, \alpha_{j}\right)}$ is the co-root of $\alpha_{j},(\cdot, \cdot)$ is the scalar product of the roots, so that the nonzero products between the simple roots are $\left(\alpha_{1}, \alpha_{1}\right)=2,\left(\alpha_{2}, \alpha_{2}\right)=4$, $\left(\alpha_{1}, \alpha_{2}\right)=-2$. The elements H_{i} span the Cartan subalgebra \mathcal{H} of $\mathcal{G}^{\mathbb{C}}$, while the elements $X_{i}^{ \pm}$ generate the subalgebras $\mathcal{G}^{ \pm}$. We shall use the standard triangular decomposition

$$
\begin{equation*}
\mathcal{G}^{\mathbb{C}}=\mathcal{G}_{+} \otimes \mathcal{H} \oplus \mathcal{G}_{-}, \quad \mathcal{G}_{ \pm} \equiv \underset{\alpha \in \Delta^{ \pm}}{\oplus} \mathcal{G}_{\alpha} \tag{2.3}
\end{equation*}
$$

where Δ^{+}, Δ^{-}, are the sets of positive, negative, roots, resp., and $\operatorname{dim} \mathcal{G}_{\alpha}=1$. Explicitly, we have
$\Delta^{ \pm}=\left\{ \pm \alpha_{1}, \pm \alpha_{2}, \pm \alpha_{3}, \pm \alpha_{4}\right\}, \quad \alpha_{3}=\alpha_{1}+\alpha_{2}, \quad \alpha_{4}=2 \alpha_{1}+\alpha_{2}$.
Let us denote the root space vector of \mathcal{G}_{α} by X_{α}, or more explicitly: $X_{k}^{ \pm} \equiv X_{ \pm \alpha_{k}}, k=$ $1,2,3,4$. To give the full Cartan-Weyl basis we need to define also $X_{k}^{ \pm}, k=3,4$, for which we follow [38]

$$
\begin{equation*}
X_{3}^{ \pm}= \pm\left[X_{1}^{ \pm}, X_{2}^{ \pm}\right], \quad X_{4}^{ \pm}= \pm \frac{1}{2}\left[X_{1}^{ \pm}, X_{3}^{ \pm}\right] \tag{2.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
H_{3} \equiv\left[X_{3}^{+}, X_{3}^{-}\right]=H_{1}+2 H_{2}, \quad H_{4} \equiv\left[X_{4}^{+}, X_{4}^{-}\right]=H_{1}+H_{2} \tag{2.6}
\end{equation*}
$$

Note that for H_{k} also holds

$$
\begin{equation*}
\lambda\left(H_{k}\right)=\left(\lambda, \alpha_{k}^{\vee}\right), \quad \forall \lambda \in \mathcal{H}^{*}, \quad k=1,2,3,4 . \tag{2.7}
\end{equation*}
$$

The algebra $\mathcal{G}=\operatorname{so}(3,2)$ is a maximally split real form [39] of $\mathcal{G}^{\mathbb{C}}$ so we can use the same basis (but over \mathbb{R}) and the same root system. Thus, we can use the second-order Casimir of $\mathcal{G}^{\mathbb{C}}$:

$$
\begin{align*}
\mathcal{C}_{2}=\frac{1}{2}\left(X_{1}^{+} X_{1}^{-}\right. & \left.+X_{1}^{-} X_{1}^{+}\right)+X_{2}^{+} X_{2}^{-}+X_{2}^{-} X_{2}^{+}+\frac{1}{2}\left(X_{3}^{+} X_{3}^{-}+X_{3}^{-} X_{3}^{+}\right) \\
& +X_{4}^{+} X_{4}^{-}+X_{4}^{-} X_{4}^{+}+\frac{1}{2} H_{1}^{2}+H_{2}^{2}+H_{1} H_{2} . \tag{2.8}
\end{align*}
$$

It useful to relate the Cartan-Weyl basis given above to the $\operatorname{so}(3,2)$ generators $X_{A B}$:

$$
\begin{align*}
& H_{1}=2 \mathrm{i} X_{12}, \quad X_{1}^{ \pm}=X_{10} \pm \mathrm{i} X_{20}, \tag{2.9a}\\
& H_{2}=X_{34}-\mathrm{i} X_{12}, \quad X_{2}^{ \pm}=\mp \frac{1}{2}\left(X_{23} \pm X_{24}+\mathrm{i} X_{14} \pm \mathrm{i} X_{13}\right) \tag{2.9b}\\
& X_{3}^{ \pm}=\mp \mathrm{i}\left(X_{03} \pm X_{04}\right), \tag{2.9c}\\
& X_{4}^{ \pm}=\frac{1}{2}\left(X_{24} \pm X_{23} \mp \mathrm{i} X_{14}-\mathrm{i} X_{13}\right) . \tag{2.9d}
\end{align*}
$$

It is easy to see that the ten generators $X_{A B}=-X_{B A}, A, B=0,1,2,3,4$, satisfy the standard so $(3,2)$ commutation relations ${ }^{1}$:

$$
\begin{equation*}
\left[X_{A B}, X_{C D}\right]=\eta_{A C} X_{B D}+\eta_{B D} X_{A C}-\eta_{A D} X_{B C}-\eta_{B C} X_{A D} \tag{2.10}
\end{equation*}
$$

where $\eta_{11}=\eta_{22}=\eta_{33}=-\eta_{00}=-\eta_{44}=1, \eta_{j k}=0$ if $j \neq k$.

[^0]
2.2. Finite-dimensional realization

It is useful to have a finite-dimensional realization of \mathcal{G} which we take from [30] (cf (2.18) which we restrict from $\operatorname{so}(4,2)$ to $\operatorname{so}(3,2))^{2}$
$X_{12}=-\frac{\mathrm{i}}{2}\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right), \quad X_{a 3}=\frac{\mathrm{i}}{2}\left(\begin{array}{cc}0 & \sigma_{a} \\ \sigma_{a} & 0\end{array}\right), \quad a=1,2$,
$X_{04}=\frac{\mathrm{i}}{2}\left(\begin{array}{cc}0 & 1_{2} \\ 1_{2} & 0\end{array}\right)$,
$X_{34}=\frac{1}{2}\left(\begin{array}{cc}1_{2} & 0 \\ 0 & -1_{2}\end{array}\right), \quad X_{a 0}=\frac{1}{2}\left(\begin{array}{cc}\sigma_{a} & 0 \\ 0 & -\sigma_{a}\end{array}\right), \quad a=1,2$,
$X_{03}=\frac{\mathrm{i}}{2}\left(\begin{array}{cc}0 & 1_{2} \\ -1_{2} & 0\end{array}\right), \quad X_{a 4}=\frac{\mathrm{i}}{2}\left(\begin{array}{cc}0 & \sigma_{a} \\ -\sigma_{a} & 0\end{array}\right), \quad a=1,2$.
The Hermiticity properties of this defining realization are

$$
\begin{align*}
& X_{A B}^{\dagger}=-X_{A B} \quad \text { for } \quad(A, B)=(0,4),(j, k) \tag{2.12a}\\
& X_{A B}^{\dagger}=X_{A B} \quad \text { for } \quad(A, B)=(0, j),(j, 4) \tag{2.12b}
\end{align*}
$$

where $j, k=1,2,3$. Note that the four generators in (2.12a) (or (2.11a)) are compact. They span the maximal compact subalgebra $\mathcal{K}=s o(3) \oplus s o(2)$, the $s o(3)$ being spanned by the generators $X_{j k}, j, k=1,2,3$, the so(2) being spanned by the generator X_{04}. The six generators in (2.12b) (or (2.11b)) are non-compact.

Thus, in this basis, we can identify-up to sign-the Hermitian conjugation with the Cartan involution θ which in general is defined by

$$
\begin{array}{llll}
\theta: X \mapsto X, & \text { if } & X & \text { is compact } \tag{2.13}\\
\theta: X \mapsto-X, & \text { if } & X & \text { is non-compact. }
\end{array}
$$

From the above we have explicitly a finite-dimensional representation for the Cartan-Weyl basis:
$H_{1}=\left(\begin{array}{cc}\sigma_{3} & 0 \\ 0 & \sigma_{3}\end{array}\right), \quad X_{1}^{+}=\left(\begin{array}{cc}\sigma_{+} & 0 \\ 0 & -\sigma_{+}\end{array}\right), \quad X_{1}^{-}=\left(\begin{array}{cc}\sigma_{-} & 0 \\ 0 & -\sigma_{-}\end{array}\right)$,
$H_{2}=\left(\begin{array}{cc}e_{2} & 0 \\ 0 & -e_{1}\end{array}\right), \quad X_{2}^{+}=\left(\begin{array}{cc}0 & \sigma_{-} \\ 0 & 0\end{array}\right), \quad X_{2}^{-}=\left(\begin{array}{cc}0 & 0 \\ \sigma_{+} & 0\end{array}\right)$,
$X_{3}^{+}=\left(\begin{array}{cc}0 & 1_{2} \\ 0 & 0\end{array}\right), \quad X_{3}^{-}=\left(\begin{array}{cc}0 & 0 \\ 1_{2} & 0\end{array}\right), \quad H_{3}=H_{1}+2 H_{2}=\left(\begin{array}{cc}1_{2} & 0 \\ 0 & -1_{2}\end{array}\right)$,
$X_{4}^{+}=\left(\begin{array}{cc}0 & \sigma_{+} \\ 0 & 0\end{array}\right), \quad X_{4}^{-}=\left(\begin{array}{cc}0 & 0 \\ \sigma_{-} & 0\end{array}\right), \quad H_{4}=H_{1}+H_{2}=\left(\begin{array}{cc}e_{1} & 0 \\ 0 & -e_{2}\end{array}\right)$,
$e_{1} \equiv \frac{1}{2}\left(1+\sigma_{3}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \quad e_{2} \equiv \frac{1}{2}\left(1-\sigma_{3}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$\sigma_{+} \equiv \frac{1}{2}\left(\sigma_{1}+\mathrm{i} \sigma_{2}\right)=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad \sigma_{-} \equiv \frac{1}{2}\left(\sigma_{1}-\mathrm{i} \sigma_{2}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.

[^1]
2.3. Structure theory

We need some more structure theory related to the applications to conformal field theory, namely, we need the following (Bruhat) decomposition

$$
\begin{equation*}
\mathcal{G}=\mathcal{N}_{+} \oplus \mathcal{M} \oplus \mathcal{A} \oplus \mathcal{N}_{-} \tag{2.15}
\end{equation*}
$$

in which all four subalgebras have physical meaning, namely, the subalgebra \mathcal{M} is the Lorentz subalgebra of three-dimensional Minkowski spacetime M^{3}, i.e., $\mathcal{M}=\operatorname{so}(2,1)$, the subalgebras $\mathcal{N}_{+}, \mathcal{N}_{-}$are Abelian and represent the translations of M^{3} and special conformal transformations of M^{3}, and the algebra \mathcal{A} represents the dilatations of M^{3} (\mathcal{A} commutes with $\mathcal{M})$. Explicitly, we have
$\mathcal{M}:\left\{X_{12}, X_{a 3}, a=1,2\right\}, \quad \mathcal{A}:\left\{H_{3}\right\}, \quad \mathcal{N}_{ \pm}:\left\{X_{k}^{ \pm}, k=2,3,4\right\}$.
Note that the generators $H_{1}, X_{1}^{ \pm}$are complex linear combinations of those of \mathcal{M} (cf (2.9a)), i.e., span the complexification $\mathcal{M}^{\mathbb{C}}=\operatorname{so}(3, \mathbb{C})$ of \mathcal{M}, and actually represent a triangular decomposition of $\mathcal{M}^{\mathbb{C}}=\mathcal{M}_{+}^{\mathbb{C}} \oplus \mathcal{M}_{h} \oplus \mathcal{M}_{-}^{\mathbb{C}}: X_{1}^{ \pm}$spanning $\mathcal{M}_{ \pm}^{\mathbb{C}}, H_{1}$ spanning the Cartan subalgebra \mathcal{M}_{h}. Matters are arranged so that the factors from (2.3) are related to the complexification of (2.15) in the following obvious manner:

$$
\begin{equation*}
\mathcal{G}_{ \pm}=\mathcal{N}_{ \pm} \oplus \mathcal{M}_{ \pm}^{\mathbb{C}}, \quad \mathcal{H}=\mathcal{A} \oplus \mathcal{M}_{h} \tag{2.17}
\end{equation*}
$$

2.4. Lie groups

Finally, we introduce the corresponding connected Lie groups: $G=S O_{0}(3,2)$ with Lie algebra $\mathcal{G}=\operatorname{so}(3,2), K=S O(3) \times S O(2)$ is the maximal compact subgroup of $G, A=\exp (\mathcal{A})=S O_{0}(1,1)$ is Abelian simply connected, $N_{ \pm}=\exp \left(\mathcal{N}_{ \pm}\right)$are Abelian simply connected subgroups of G preserved by the action of A. The group $M \cong S O_{0}(2,1)$ (with Lie algebra \mathcal{M}) commutes with A. The subgroup $P=M A N$, where $N=N_{+}$or $N=N_{-}$, is a maximal parabolic subgroup of G. Parabolic subgroups are important because the representations induced from them generate all admissible irreducible representations of $G[40,41]$.

3. Representations and invariant operators

3.1. Elementary representations

We use the approach of [29] which we adapt in a condensed form here. We work with so-called elementary representations (ERs). They are induced from representations of $P=M A N_{+}$, with the factor N_{+}being represented trivially. We take $p=0,1,2, \ldots$ to fix a $(p+1)$ dimensional representation of M, and $c \in \mathbb{C}$ to fix a (non-unitary) character of A. These data are enough to determine a weight $\Lambda \in \mathcal{H}^{*}$ as follows: $\Lambda\left(H_{1}\right)=p, \Lambda\left(H_{3}\right)=c$. Thus, we shall denote the ERs by C^{Λ}. They can be considered also holomorphic elementary representations of $G^{\mathbb{C}}$ and their functions can be taken to be complex-valued C^{∞} functions on G or $G^{\mathbb{C}}$. The representation action is given by the left regular action, which infinitesimally is

$$
\begin{equation*}
\left.\left(\pi_{\Lambda}(X) \varphi\right)(g) \doteq \frac{\mathrm{d}}{\mathrm{~d} t} \varphi(\exp (-t X) g)\right|_{t=0} \tag{3.1}
\end{equation*}
$$

where $X \in \mathcal{G}, g \in G$, and these can be extended to $\mathcal{G}^{\mathbb{C}}$ and $G^{\mathbb{C}}$. These functions possess the properties of right covariance [29] which here means:

$$
\begin{align*}
& \hat{X} \varphi=\Lambda(X) \cdot \varphi, \quad X \in \mathcal{H} \tag{3.2a}\\
& \hat{X} \varphi=0, \quad X \in \mathcal{G}_{+} \tag{3.2b}
\end{align*}
$$

where \hat{X} is the right action of the generators of the algebra \mathcal{G}

$$
\begin{equation*}
\left.(\hat{X} \varphi)(g) \doteq \frac{\mathrm{d}}{\mathrm{~d} t} \varphi(g \exp (t X))\right|_{t=0} \tag{3.3}
\end{equation*}
$$

Right covariance is also used to pass from functions on the group G to the so-called reduced functions $\hat{\varphi}$ on the coset space $G^{\mathbb{C}} / B$, where $B=\exp (\mathcal{H}) \exp \left(\mathcal{G}_{+}\right)$is a Borel subgroup of $G^{\mathbb{C}}$ (and we use the fact that the group G is maximally split and we can work with $G^{\mathbb{C}}$ instead). Note that $G^{\mathbb{C}} / B$ is a completion of $G_{-}=\exp \left(\mathcal{G}_{-}\right)$and as usually we shall use the local coordinates of G_{-}:

$$
G_{-}=\left\{g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{3.4}\\
z & 1 & 0 & 0 \\
\xi+z v / 2 & v & 1 & 0 \\
\eta-v z^{2} / 6 & \xi-z v / 2 & -z & 1
\end{array}\right)\right\}
$$

obtained from exponentiation of the general term: $z X_{1}^{-}+v X_{2}^{-}+\xi X_{3}^{-}+\eta X_{4}^{-}$of \mathcal{G}_{-}. The functions $\hat{\varphi}(z, v, \xi, \eta)$ are polynomials in the variable z of degree p and smooth functions in the other three variables. Consistently with the above, we have

$$
\begin{align*}
& \hat{H}_{1} \hat{\varphi}=p \hat{\varphi}, \quad p=0,1, \ldots, \tag{3.5a}\\
& \hat{H}_{3} \hat{\varphi}=c \hat{\varphi} . \tag{3.5b}
\end{align*}
$$

The right action of \mathcal{G}_{-}on $\hat{\varphi}$ is calculated easily and after some changes of variables $(z, v, \xi, \eta) \mapsto(z, v, x, u)$ we obtain
$\hat{X}_{1}^{-}=\partial_{z}, \quad \hat{X}_{2}^{-}=\partial_{v}-z \partial_{x}+z^{2} \partial_{u}, \quad \hat{X}_{3}^{-}=\partial_{x}-2 z \partial_{u}, \quad \hat{X}_{4}^{-}=\partial_{u}$.
The left, representation, action on $\hat{\varphi}$ is derived in a straightforward way and after the same changes of variables we have

$$
\begin{align*}
& \pi_{\Lambda}\left(X_{1}^{+}\right)=z^{2} \partial_{z}+2 x \partial_{v}+u \partial_{x}-z p \tag{3.7a}\\
& \pi_{\Lambda}\left(X_{2}^{+}\right)=-(x+z v) \partial_{z}+v^{2} \partial_{v}+v x \partial_{x}+x^{2} \partial_{u}-\frac{1}{2}(c-p) v \tag{3.7b}\\
& \pi_{\Lambda}\left(H_{1}\right)=2 z \partial_{z}-2 v \partial_{v}+2 u \partial_{u}-p \tag{3.7c}\\
& \pi_{\Lambda}\left(H_{2}\right)=-z \partial_{z}+2 v \partial_{v}+x \partial_{x}-\frac{1}{2}(c-p) \tag{3.7d}\\
& \pi_{\Lambda}\left(X_{1}^{-}\right)=-\partial_{z}+v \partial_{x}+2 x \partial_{u} \tag{3.7e}\\
& \pi_{\Lambda}\left(X_{2}^{-}\right)=-\partial_{v} \tag{3.7f}
\end{align*}
$$

In addition, we have

$$
\begin{align*}
& \pi_{\Lambda}\left(X_{3}^{+}\right)= {\left[\pi_{\Lambda}\left(X_{1}^{+}\right), \pi_{\Lambda}\left(X_{2}^{+}\right)\right]=\left(v z^{2}-u\right) \partial_{z}+2 x v \partial_{v}+\left(x^{2}+u v\right) \partial_{x} } \\
&+2 x u \partial_{u}-(x+z v) p-(c-p) x \tag{3.7g}\\
& \pi_{\Lambda}\left(X_{3}^{-}\right)= {\left[\pi_{\Lambda}\left(X_{2}^{-}\right), \pi_{\Lambda}\left(X_{1}^{-}\right)\right]=-\partial_{x} } \tag{3.7h}\\
& \pi_{\Lambda}\left(H_{3}\right)= {\left[\pi_{\Lambda}\left(X_{3}^{+}\right), \pi_{\Lambda}\left(X_{3}^{-}\right)\right]=\pi_{\Lambda}\left(H_{1}\right)+2 \pi_{\Lambda}\left(H_{2}\right) } \\
&=2 x \partial_{x}+2 v \partial_{v}+2 u \partial_{u}-c \tag{3.7i}\\
& \pi_{\Lambda}\left(X_{4}^{+}\right)= \frac{1}{2}\left[\pi_{\Lambda}\left(X_{1}^{+}\right), \pi_{\Lambda}\left(X_{3}^{+}\right)\right]=\left(x z^{2}+u z\right) \partial_{z}+x^{2} \partial_{v}+x u \partial_{x} \\
&+u^{2} \partial_{u}-(x z+u) p-\frac{1}{2}(c-p) u \tag{3.7j}
\end{align*}
$$

$$
\begin{align*}
\pi_{\Lambda}\left(X_{4}^{-}\right) & =\left[\pi_{\Lambda}\left(X_{3}^{-}\right), \pi_{\Lambda}\left(X_{1}^{-}\right)\right]=-\partial_{u} \tag{3.7k}\\
\pi_{\Lambda}\left(H_{4}\right) & =\left[\pi_{\Lambda}\left(X_{4}^{+}\right), \pi_{\Lambda}\left(X_{4}^{-}\right)\right]=\pi_{\Lambda}\left(H_{1}\right)+\pi_{\Lambda}\left(H_{2}\right) \\
& =z \partial_{z}+x \partial_{x}+2 u \partial_{u}-\frac{1}{2}(c+p) \tag{3.7l}
\end{align*}
$$

Since the left and right actions commute we can calculate the value of the second-order Casimir in either of them and obtain

$$
\begin{equation*}
\pi_{\Lambda}\left(\mathcal{C}_{2}\right)=\hat{\mathcal{C}_{2}}=\frac{1}{4}\left((p+1)^{2}+(c+3)^{2}\right) \tag{3.8}
\end{equation*}
$$

Remark. Note that starting from a constant function $\hat{\varphi}=C$ and taking $c=p$ we obtain finite-dimensional representation consisting of polynomials in z obtained by the action of $\pi_{\Lambda}\left(X_{1}^{+}\right):$

$$
\left(\pi_{\Lambda}\left(X_{1}^{+}\right)\right)^{k} \cdot C= \begin{cases}(-z)^{k} \frac{p!}{(p-k)!} C & k \leqslant p \tag{3.9}\\ 0 & k>p\end{cases}
$$

The same would be true if $p=0$ and $\frac{1}{2}(c-p)$ would be a non-negative integer r, then we would obtain finite-dimensional representation consisting of polynomials in v obtained by the action of $\pi_{\Lambda}\left(X_{2}^{+}\right)$:

$$
\left(\pi_{\Lambda}\left(X_{2}^{+}\right)\right)^{k} \cdot C= \begin{cases}(-v)^{k} \frac{r!}{(r-k)!} C & k \leqslant r \tag{3.10}\\ 0 & k>r .\end{cases}
$$

3.2. Verma modules and singular vectors

We note that conditions (3.2) are the defining conditions for the highest weight vector of a highest weight module (HWM) over $\mathcal{G}^{\mathbb{C}}$ with highest weight Λ, in particular, of a Verma module with this highest weight. Let us recall that a Verma module V^{Λ} is defined as the HWM over $\mathcal{G}^{\mathbb{C}}$ with highest weight $\Lambda \in \mathcal{H}^{*}$ and highest weight vector $v_{0} \in V^{\Lambda}$, induced from the one-dimensional representation $V_{0} \cong \mathbb{C} v_{0}$ of $U(\mathcal{B})$, where $\mathcal{B}=\mathcal{H} \oplus \mathcal{G}_{+}$is a Borel subalgebra of \mathcal{G}, such that

$$
\begin{array}{ll}
X v_{0}=0, & \forall X \in \mathcal{G}_{+} \\
H v_{0}=\Lambda(H) v_{0}, & \forall H \in \mathcal{H} \tag{3.11}
\end{array}
$$

Verma modules are generically irreducible. A Verma module V^{Λ} is reducible [42] iff there exists a root $\beta \in \Delta^{+}$and $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(\Lambda+\rho, \beta^{\vee}\right)=m \tag{3.12}
\end{equation*}
$$

holds, where $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$. If (3.12) holds then V^{Λ} is reducible. It contains an invariant submodule which is also a Verma module $V^{\Lambda^{\prime}}$ with shifted weight $\Lambda^{\prime}=\Lambda-m \beta$. This statement is equivalent to the fact that V^{Λ} contains a singular vector $v_{s} \in V^{\Lambda}$, such that $v_{s} \neq \xi v_{0},(0 \neq \xi \in \mathbb{C})$, and

$$
\begin{align*}
& X v_{s}=0, \quad \forall X \in \mathcal{G}_{+} \tag{3.13}\\
& H v_{s}=\Lambda^{\prime}(H) v_{s}, \quad \Lambda^{\prime}=\Lambda-m \beta, \quad \forall H \in \mathcal{H}
\end{align*}
$$

It is important that one can find explicit formulae for the singular vectors. The singular vectors introduced above are given by [29]

$$
\begin{equation*}
v_{s}=v^{\alpha, m_{\alpha}}=\mathcal{P}^{\alpha, m_{\alpha}}\left(\mathcal{G}_{-}\right) v_{0} \tag{3.14}
\end{equation*}
$$

where $\mathcal{P}^{\alpha, m_{\alpha}}$ is a homogeneous polynomial in the generators of \mathcal{G}_{-}of weight αm_{α} and is unique up to a nonzero multiplicative constant. The conditions (3.12) spelled out for the four
positive roots in our situation are

$$
\begin{align*}
& m_{1}=m_{1}(\Lambda) \doteq \Lambda\left(H_{1}\right)+1 \in \mathbb{N} \tag{3.15a}\\
& m_{2}=m_{2}(\Lambda) \doteq \Lambda\left(H_{2}\right)+1 \in \mathbb{N} \tag{3.15b}\\
& m_{3}=m_{3}(\Lambda) \doteq \Lambda\left(H_{3}\right)+3=m_{1}+2 m_{2} \in \mathbb{N} \tag{3.15c}\\
& m_{4}=m_{4}(\Lambda) \doteq \Lambda\left(H_{4}\right)+2=m_{1}+m_{2} \in \mathbb{N} \tag{3.15d}
\end{align*}
$$

The singular vectors corresponding to these cases are

$$
\begin{align*}
& v^{\alpha_{1}, m_{1}}=\left(X_{1}^{-}\right)^{m_{1}} v_{0}, \quad m_{1} \in \mathbb{N}, \tag{3.16a}\\
& v^{\alpha_{2}, m_{2}}=\left(X_{2}^{-}\right)^{m_{2}} v_{0}, \quad m_{2} \in \mathbb{N}, \tag{3.16b}\\
& v^{\alpha_{3}, m_{3}}=\sum_{k=0}^{m_{3}} a_{k}\left(X_{2}^{-}\right)^{m_{3}-k}\left(X_{1}^{-}\right)^{m_{3}}\left(X_{2}^{-}\right)^{k} v_{0}, \quad m_{3} \in \mathbb{N}, \tag{3.16c}\\
& a_{k}= \begin{cases}a_{0}(-1)^{k}\binom{m_{3}}{k} \frac{m_{2}}{m_{2}-k}, & m_{2} \notin\left\{0, \ldots, m_{3}\right\} \\
a_{0} \delta_{k, m_{2}}, & m_{2} \in\left\{0, \ldots, m_{3}\right\}\end{cases} \\
& v^{\alpha_{4}, m_{4}}=\sum_{k=0}^{2 m_{4}} b_{k}\left(X_{1}^{-}\right)^{2 m_{4}-k}\left(X_{2}^{-}\right)^{m_{4}}\left(X_{1}^{-}\right)^{k} v_{0}, \quad m_{4} \in \mathbb{N}, \tag{3.16d}\\
& b_{k}= \begin{cases}b_{0}(-1)^{k}\binom{2 m_{4}}{k} \frac{m_{1}}{m_{1}-k}, & m_{1} \notin\left\{0, \ldots, 2 m_{4}\right\} \\
b_{0} \delta_{k, m_{1}}, & m_{1} \in\left\{0, \ldots, 2 m_{4}\right\}\end{cases}
\end{align*}
$$

(Note that in each of the four cases (3.16) only the relevant m_{j} must be a natural number (as displayed).) Formulae (3.16a) and (3.16b) are the general expressions valid for any simple root [29], while ($3.16 c$) and ($3.16 d$) are given in [38]. Certainly, (3.12) may be fulfilled for several positive roots, even for all of them if (3.12) is fulfilled for all simple roots.

For future use we note one important special case of (3.16c) when m_{3} is even, and $m_{1}=1$, then $m_{2}=\frac{1}{2}\left(m_{3}-1\right) \notin \mathbb{Z}$. In this case $(3.16 c)$ can be written as follows:
$v^{\alpha_{3}, m_{3}}=\left(\left(X_{3}^{-}\right)^{2}-4 X_{4}^{-} X_{2}^{-}\right)^{\frac{1}{2} m_{3}} v_{0}+P\left(\mathcal{G}_{-}\right) X_{1}^{-} v_{0}, \quad m_{3} \in 2 \mathbb{N}, \quad m_{1}=1$,
where in order to achieve this simple form we have introduced also the non-simple root vectors X_{3}^{-}, X_{4}^{-}, and $P\left(\mathcal{G}_{-}\right)$is a polynomial whose exact form is not important for our purposes.

Note that independently from the question of reducibility the numbers m_{1}, m_{2} may be used to characterize the representations C^{Λ} and V^{Λ}. In particular, the second-order Casimir is expressed in a simple manner through these numbers after evaluation on the highest weight vector:

$$
\begin{align*}
\mathcal{C}_{2} v_{0}= & \left\{\frac{1}{2}\left(X_{1}^{+} X_{1}^{-}+X_{1}^{-} X_{1}^{+}\right)+X_{2}^{+} X_{2}^{-}+X_{2}^{-} X_{2}^{+}+\frac{1}{2}\left(X_{3}^{+} X_{3}^{-}+X_{3}^{-} X_{3}^{+}\right)\right. \\
& \left.+X_{4}^{+} X_{4}^{-}+X_{4}^{-} X_{4}^{+}+\frac{1}{2} H_{1}^{2}+H_{2}^{2}+H_{1} H_{2}\right\} v_{0} \\
= & \left\{\frac{1}{2} H_{1}+H_{2}+\frac{1}{2} H_{3}+H_{4}+\frac{1}{2} H_{1}^{2}+H_{2}^{2}+H_{1} H_{2}\right\} v_{0} \\
= & \left(\frac{1}{2} m_{1}^{2}+m_{2}^{2}+m_{1} m_{2}\right) v_{0} \tag{3.18a}\\
= & \frac{1}{4}\left(m_{1}^{2}+m_{3}^{2}\right) v_{0} \tag{3.18b}\\
= & \frac{1}{2}\left(m_{2}^{2}+m_{4}^{2}\right) v_{0} . \tag{3.18c}
\end{align*}
$$

(Passing from the first to the second equality we use the commutation relations and the defining properties of v_{0}, e.g., $\left(X_{1}^{+} X_{1}^{-}+X_{1}^{-} X_{1}^{+}\right) v_{0}=X_{1}^{+} X_{1}^{-} v_{0}=H_{1} v_{0}$.) Comparison with (3.8) is straightforward if we substitute in $(3.18 b) m_{1}=\Lambda\left(H_{1}\right)+1=p+1, m_{3}=\Lambda\left(H_{3}\right)+3=c+3$.

It is useful for future reference to write down the numbers corresponding to the four cases of Λ^{\prime}, i.e., to write down $m_{1}\left(\Lambda^{\prime}\right), m_{2}\left(\Lambda^{\prime}\right)$ for the four cases of (3.15). In fact, though it is redundant, the picture becomes more instructive, if we write down also $m_{3}\left(\Lambda^{\prime}\right), m_{4}\left(\Lambda^{\prime}\right)$. Explicitly, we have for $m_{i} \equiv m_{i}(\Lambda)$:

$$
\begin{gather*}
\left(m_{1}\left(\Lambda^{\prime}\right), m_{2}\left(\Lambda^{\prime}\right), m_{3}\left(\Lambda^{\prime}\right), m_{4}\left(\Lambda^{\prime}\right)\right)=\left(-m_{1}, m_{4}, m_{3}, m_{2}\right) \\
\Lambda^{\prime}=\Lambda-m_{1} \alpha_{1}, \quad m_{1} \in \mathbb{N}, \tag{3.19a}\\
\left(m_{1}\left(\Lambda^{\prime}\right), m_{2}\left(\Lambda^{\prime}\right), m_{3}\left(\Lambda^{\prime}\right), m_{4}\left(\Lambda^{\prime}\right)\right)=\left(m_{3},-m_{2}, m_{1}, m_{4}\right) \\
\Lambda^{\prime}=\Lambda-m_{2} \alpha_{2}, \quad m_{2} \in \mathbb{N}, \tag{3.19b}\\
\left(m_{1}\left(\Lambda^{\prime}\right), m_{2}\left(\Lambda^{\prime}\right), m_{3}\left(\Lambda^{\prime}\right), m_{4}\left(\Lambda^{\prime}\right)\right)=\left(m_{1},-m_{4},-m_{3},-m_{2}\right) \\
\Lambda^{\prime}=\Lambda-m_{3} \alpha_{3}, \quad m_{3} \in \mathbb{N}, \tag{3.19c}\\
\left(m_{1}\left(\Lambda^{\prime}\right), m_{2}\left(\Lambda^{\prime}\right), m_{3}\left(\Lambda^{\prime}\right), m_{4}\left(\Lambda^{\prime}\right)\right)=\left(-m_{3}, m_{2},-m_{1},-m_{4}\right) \\
\Lambda^{\prime}=\Lambda-m_{4} \alpha_{4}, \quad m_{4} \in \mathbb{N} \tag{3.19d}
\end{gather*}
$$

Since the Verma modules $V^{\Lambda^{\prime}}$ are isomorphic to submodules of V^{Λ} they have the same Casimirs. For \mathcal{C}_{2} this is most obvious from (3.18b) and (3.18c).

All the above is valid for Verma modules also over $\operatorname{so}(5, \mathbb{C})$. Now we shall express conditions (3.12) for the four positive roots taking into account the signatures of our representations (cf [33]):

$$
\begin{align*}
& m_{1}=\Lambda\left(H_{1}\right)+1=2 s_{0}+1, \quad s_{0}=\frac{1}{2} p \in \frac{1}{2} \mathbb{Z}_{+}, \tag{3.20a}\\
& m_{2}=\Lambda\left(H_{2}\right)+1=1-E_{0}-s_{0}, \quad \quad E_{0}=-\frac{1}{2} c, \tag{3.20b}\\
& m_{3}=\Lambda\left(H_{3}\right)+3=m_{1}+2 m_{2}=3-2 E_{0}, \tag{3.20c}\\
& m_{4}=\Lambda\left(H_{4}\right)+2=m_{1}+m_{2}=2-E_{0}+s_{0}, \tag{3.20d}
\end{align*}
$$

where we have introduced also the traditionally used energy E_{0} and spin s_{0}. For future reference, we record an explicit expression for Λ :

$$
\begin{equation*}
\Lambda=\frac{1}{2}\left(m_{1}-1\right) \alpha_{1}+\frac{1}{2}\left(m_{3}-3\right) \alpha_{3}=s_{0} \alpha_{1}-E_{0} \alpha_{3} . \tag{3.21}
\end{equation*}
$$

The eigenvalue of H_{3} is called the energy since upon contraction of $\operatorname{so}(3,2)$ to the Poincaré algebra, the generator H_{3} goes to the translation operator P_{0}. Analogously, H_{1} is the third component of the angular momentum. In terms of E_{0}, s_{0} the Casimir has the expression

$$
\begin{equation*}
\mathcal{C}_{2}=E_{0}\left(E_{0}-3\right)+s_{0}\left(s_{0}+1\right)+5 / 2 \tag{3.22}
\end{equation*}
$$

which (up to the additive constant) was the preferred usage in [25-27]. (In the latter papers the irreducible representations of $\operatorname{so}(3,2)$ are denoted by $D\left(E_{0}, s_{0}\right)$.)

Next we note that if $m_{1}, m_{2} \in \mathbb{N}$, then the irreducible representations with non-positive energy $E_{0}=\left(3-m_{1}-2 m_{2}\right) / 2$, and spin $s_{0}=\left(m_{1}-1\right) / 2$, are the non-unitary finitedimensional representations of \mathcal{G}. Their dimension is $m_{1} m_{2} m_{3} m_{4} / 6$. (For example $m_{1} m_{2}=1$ gives the trivial one-dimensional representation; the fundamental representations are obtained for $m_{1}=1, m_{2}=2$ and $m_{1}=2, m_{2}=1$.)

But we are interested in the positive energy UIRs of \mathcal{G} given as follows [20-22] (with $\left.s_{0} \in \frac{1}{2} \mathbb{Z}_{+}\right):$
Rac : $D\left(E_{0}, s_{0}\right)=D(1 / 2,0), \quad$ Di $: D\left(E_{0}, s_{0}\right)=D(1,1 / 2)$,
$D\left(E_{0}>1 / 2, s_{0}=0\right), \quad D\left(E_{0}>1, s_{0}=1 / 2\right), \quad D\left(E_{0} \geqslant s_{0}+1, s_{0} \geqslant 1\right) . \quad$ (3.23b)
The first two are the singleton representations discovered by Dirac [20] and the last ones for $E_{0}=s_{0}+1$ correspond to the spin- s_{0} massless representations. Comparing the list (3.20) with (3.23) we note that (3.20a) holds in all cases of (3.23), while (3.20b) never holds because $m_{2} \leqslant 1 / 2$. Next, we note that m_{3} is a positive integer only for $E_{0}=1 / 2,1$, in which case $m_{3}=2,1$, respectively. Similarly, m_{4} is a positive integer only for $E_{0}-s_{0}=1$, and that integer is $m_{4}=1$.

The singular vectors corresponding to these cases are (choosing the normalization constants appropriately):

$$
\begin{align*}
& v^{\alpha_{1}, m_{1}}=\left(X_{1}^{-}\right)^{m_{1}} v_{0}, \quad m_{1}=2 s_{0}+1 \in \mathbb{N}, \tag{3.24a}\\
& v^{\alpha_{3}, 1}=\left(s_{0} X_{3}^{-}+X_{2}^{-} X_{1}^{-}\right) v_{0}, \quad m_{3}=1, \tag{3.24b}\\
& v^{\alpha_{3}, 2}=\left\{\left(2 s_{0}-1\right)\left(2 s_{0}+3\right) X_{2}^{-}\left(X_{1}^{-}\right)^{2} X_{2}^{-}-\frac{1}{2}\left(2 s_{0}+1\right)\left(2 s_{0}+3\right)\left(X_{2}^{-}\right)^{2}\left(X_{1}^{-}\right)^{2}\right. \\
& \left.\quad-\frac{1}{2}\left(2 s_{0}-1\right)\left(2 s_{0}+1\right)\left(X_{1}^{-}\right)^{2}\left(X_{2}^{-}\right)^{2}\right\} v_{0} \\
& =\left\{\left(1-4 s_{0}^{2}\right)\left(X_{3}^{-}\right)^{2}-4\left(1-2 s_{0}\right) X_{4}^{-} X_{2}^{-}\right. \\
& \left.\quad+4\left(1-2 s_{0}\right) X_{3}^{-} X_{2}^{-} X_{1}^{-}-4\left(X_{2}^{-}\right)^{2}\left(X_{1}^{-}\right)^{2}\right\} v_{0}, \quad m_{3}=2, \tag{3.24c}\\
& v^{a_{4}, 1}=\left\{2 s_{0}\left(2 s_{0}-1\right) X_{4}^{-}+\left(2 s_{0}-1\right) X_{3}^{-} X_{1}^{-}+X_{2}^{-}\left(X_{1}^{-}\right)^{2}\right\} v_{0}, \quad m_{4}=1, \tag{3.24d}
\end{align*}
$$

where we have introduced also the non-simple root vectors (choosing the appropriate ordering). Note that (3.24b) for $s_{0}=0,(3.24 c)$ for $s_{0}=1 / 2$ and $(3.24 d)$ for $s_{0}=0,1 / 2$ are composite singular vectors being descendants of $(3.24 a)$. (The latter follow also from the general formulae (3.16): for (3.24b) and (3.24c) from (3.16c) with $m_{2}=\frac{1}{2}\left(m_{3}-m_{1}\right)=0$, and for (3.24d) from (3.16d) with $m_{1}=1,2 \in\left\{0,1,2=2 m_{4}\right\}$.)

3.3. Invariant differential operators

The main ingredient of the procedure of [29] is that to every singular vector there corresponds an invariant differential operator. Namely, to the singular vector $v_{s}=v^{\alpha, m_{\alpha}}$ (cf (3.14)) of the Verma module V^{Λ} there corresponds an invariant differential operator

$$
\begin{equation*}
D^{\alpha, m_{\alpha}}: C^{\Lambda} \longrightarrow C^{\Lambda-m_{\alpha} \alpha} \tag{3.25}
\end{equation*}
$$

given explicitly by

$$
\begin{equation*}
D^{\alpha, m_{\alpha}}=\mathcal{P}^{\alpha, m}\left(\hat{\mathcal{G}}_{-}\right) \tag{3.26}
\end{equation*}
$$

where $\mathcal{P}^{\alpha, m}$ is the same polynomial as in (3.14), and $\hat{\mathcal{G}}_{-}$symbolizes the right action (3.3).
These operators give rise to the \mathcal{G}-invariant equations:
$D^{\alpha, m_{\alpha}} \hat{\varphi}=\hat{\varphi}^{\prime}, \quad \hat{\varphi} \in C^{\Lambda}, \quad \hat{\varphi}^{\prime} \in C^{\Lambda-m_{\alpha} \alpha}, \quad \alpha$ non-compact
$D^{\alpha, m_{\alpha}} \hat{\varphi}=0, \quad \hat{\varphi} \in C^{\Lambda}, \quad \alpha$ compact.
We recall that a compact root is defined by the property that it has zero value on the dilatation subalgebra \mathcal{A}, i.e., in our case, on the generator H_{3}, which means that only the root α_{1} is compact. In fact, equation (3.27b) just expresses the fact that we have induction from finitedimensional irreps of the Lorentz group M. In our case, the counterpart of (3.27b) is $\partial_{z}^{m} \hat{\varphi}=0$, which is trivially satisfied since all our functions are polynomials of degree $2 s_{0}=m-1=p$.

The representations in $(3.27 a)$ have the same Casimir. The operators $D^{\alpha, m_{\alpha}}$ have the intertwining property:

$$
\begin{equation*}
D^{\alpha, m_{\alpha}} \circ \pi_{\Lambda}(X) \hat{\varphi}=\pi_{\Lambda^{\prime}}(X) \circ D^{\alpha, m_{\alpha}} \hat{\varphi}, \quad \Lambda^{\prime}=\Lambda-m_{\alpha} \alpha, \quad \forall X \in \mathcal{G}, \quad \forall \hat{\varphi} \in C^{\Lambda} \tag{3.28}
\end{equation*}
$$

In spite of (3.28) the ERs C^{Λ} and $C^{\Lambda^{\prime}}$ are not equivalent but only partially equivalent since the differential operators $D^{\alpha, m_{\alpha}}$ have nontrivial kernels and/or images (for more detailed explanations of these notions we refer to [43]).

For future use we mention one important case in which arises the d'Alembert operator. Namely, we consider $m_{1}=1, m_{3} \in 2 \mathbb{N}$, the singular vectors are (3.16a) and (3.17) (the latter equivalent to ($3.16 c$)). Thus, the relevant equations are

$$
\begin{align*}
& \partial_{z} \hat{\varphi}=0, \quad m_{1}=1, \tag{3.29a}\\
& \begin{aligned}
D^{\alpha_{3}, m_{3}} \hat{\varphi} & =\left\{\left(\partial_{x}-2 z \partial_{u}\right)^{2}-4 \partial_{u}\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right)\right\}^{\frac{1}{2} m_{3}} \hat{\varphi}+P\left(\hat{\mathcal{G}}_{-}\right) \partial_{z} \hat{\varphi} \\
& =\left(\partial_{x}^{2}-4 \partial_{u} \partial_{v}\right)^{\frac{1}{2} m_{3}} \hat{\varphi}=\hat{\varphi}^{\prime}, \quad m_{1}=1, \quad m_{3} \in 2 \mathbb{N} .
\end{aligned}
\end{align*}
$$

Note that the operator $\partial_{x}^{2}-4 \partial_{v} \partial_{u}$ is the d'Alembert operator in M^{3} if we identify the coordinates as follows:

$$
\begin{equation*}
x=y_{0}, \quad u=y_{1}-\mathrm{i} y_{2}, \quad v=y_{1}+\mathrm{i} y_{2} \tag{3.30}
\end{equation*}
$$

Then indeed we have

$$
\begin{equation*}
\partial_{y}^{2}-4 \partial_{v} \partial_{u}=\partial_{0}^{2}-\partial_{1}^{2}-\partial_{2}^{2} \equiv \square \tag{3.31}
\end{equation*}
$$

Analogously, the Minkowski length is given by

$$
\begin{equation*}
x^{2}-u v=y_{0}^{2}-y_{1}^{2}-y_{2}^{2} \equiv y^{2} . \tag{3.32}
\end{equation*}
$$

3.4. Quartet of reducible representations

Here we treat a quartet of reducible representations which is very important since it contains all finite-dimensional irreps of $\operatorname{so}(3,2)$. To be more explicit we start with C^{Λ} such that $m_{j} \equiv m_{j}(\Lambda)$ are natural numbers. Then we have the following diagram:

$$
\begin{array}{ccc}
C^{\Lambda} & \underset{3, m_{3}}{\longrightarrow} & C^{\Lambda-m_{3} \alpha_{3}} \\
{ }_{m_{2}}^{2} \downarrow & & { }_{m_{2}}^{4} \uparrow \tag{3.33a}\\
C^{\Lambda-m_{2} \alpha_{2}} & \underset{3, m_{1}}{\longrightarrow} & C^{\Lambda-m_{2} \alpha_{2}-m_{1} \alpha_{3}}
\end{array}
$$

where the numbers at the arrows denote the corresponding differential operators $D^{\alpha_{k}, m_{k}^{\prime}}, k=$ $2,3,4$. It is also very instructive to write the same diagram with explicit signatures:

$$
\begin{array}{ccc}
\left(m_{1}, m_{2}, m_{3}, m_{4}\right) & \underset{3, m_{3}}{\longrightarrow} & \left(m_{1},-m_{4},-m_{3},-m_{2}\right) \\
{ }_{m_{2}}^{2} \downarrow & & { }_{m_{2}}^{4} \uparrow . \tag{3.33b}\\
\left(m_{3},-m_{2}, m_{1}, m_{4}\right) & \underset{3, m_{1}}{\longrightarrow} & \left(m_{3},-m_{4},-m_{1}, m_{2}\right)
\end{array}
$$

The representations in (3.33) have the same Casimir and are partially equivalent. It is natural to ask whether (3.33) is a commutative diagram. Formally, it is, since as differential
operators we have

$$
\begin{equation*}
D^{\alpha_{3}, m_{3}}=D^{\alpha_{4}, m_{2}} \circ D^{\alpha_{3}, m_{1}} \circ D^{\alpha_{2}, m_{2}} . \tag{3.34}
\end{equation*}
$$

However, the kernels and images of these operators may not coincide ${ }^{3}$, since the operator $D^{\alpha_{3}, m_{3}}$ also factorizes according to the second line of (3.16 c^{\prime}):

$$
\begin{equation*}
D^{\alpha_{3}, m_{3}}=D^{\alpha_{2}, m_{4}} \circ D^{\alpha_{1}, m_{3}} \circ D^{\alpha_{2}, m_{2}} \tag{3.35}
\end{equation*}
$$

(This second decomposition of $D^{\alpha_{3}, m_{3}}$ does not appear on (3.33) since it involves one intermediate space which is unphysical-the z-dependence is not polynomial.)

The finite-dimensional irreps of $\operatorname{so}(3,2)$ shall be denoted by $E_{m_{1}, m_{2}}$. They correspond to the holomorphic (or anti-holomorphic) irreps of $\operatorname{so}(5, \mathbb{C})$ and have the same dimension: $\operatorname{dim}_{m_{1}, m_{2}}=m_{1} m_{2} m_{3} m_{4} / 6$. In our setting all of these are subspaces of C^{Λ} in the top-left corner of diagram (3.33) and are obtained in the following way:
$E_{m_{1}, m_{2}}=\left\{f \in C^{\Lambda}: m_{k}=m_{k}(\Lambda) \in \mathbb{N}, D^{\alpha_{1}, m_{1}} f=\partial_{z}^{m_{1}} f=0, D^{\alpha_{2}, m_{2}} f=0\right\}$.
Of course, the first equation is fulfilled for C^{Λ} by definition, but we include it for completeness. The finite-dimensional subspaces are also in the kernel of the operator $D^{\alpha_{3}, m_{3}}$ due to decomposition (3.35).

The diagram (3.33) is important also because it contains effectively an additional integral operator which we shall not consider in detail but just mention at this point. This operator is related to the so-called restricted root system of \mathcal{G} w.r.t. \mathcal{A}, where the root spaces are $\mathcal{N}_{ \pm}$. In our case (cf (2.16)), this restricted root system has just one root which coincides with α_{3} restricted to \mathcal{A} due to the facts $\left[H_{3}, X_{1}^{ \pm}\right]=0,\left[H_{3}, X_{k}^{ \pm}\right]= \pm 2 X_{k}^{ \pm}, k=2,3,4$. The action of this root on the signatures naturally coincides with the action of α_{3}, but the action itself is valid for arbitrary signatures. The operator realizing such an action is an integral operator involving the conformal two-point function $G_{\Lambda}, \Lambda \cong\left(m_{1}, m_{2}, m_{3}, m_{4}\right)$. For scalar functions ($m_{1}=1$) the latter is given by

$$
\begin{equation*}
G_{\Lambda}(y)=\frac{N(\Lambda)}{\left(y^{2}\right)^{\frac{1}{2}}\left(3+m_{3}\right)}, \quad y^{2}=y_{0}^{2}-y_{1}^{2}-y_{2}^{2} \tag{3.37}
\end{equation*}
$$

where $N(\Lambda)$ is a normalization constant related to the Plancherel measure ${ }^{4}$, and the integral operator itself is given by

$$
\begin{align*}
& A_{\Lambda}: C^{\Lambda} \longrightarrow C^{\Lambda^{\prime}}, \quad \Lambda^{\prime}=\Lambda-m_{3} \alpha_{3}, \\
& \left(A_{\Lambda} \hat{\varphi}\right)(y)=\int G_{\Lambda}\left(y-y^{\prime}\right) \hat{\varphi}\left(y^{\prime}\right) \mathrm{d}^{3} y^{\prime}, \quad \hat{\varphi} \in C^{\Lambda} \tag{3.38}
\end{align*}
$$

If $m_{3} \notin \mathbb{Z}$ the operators A_{Λ} and $A_{\Lambda^{\prime}}$ are inverse to each other:

$$
\begin{equation*}
A_{\Lambda^{\prime}} \circ A_{\Lambda}=\mathrm{id}_{C^{\Lambda}}, \quad A_{\Lambda} \circ A_{\Lambda^{\prime}}=\mathrm{id}_{C^{\Lambda^{\prime}}} \tag{3.39}
\end{equation*}
$$

For $m_{3} \in 2 \mathbb{N}$ the operator A_{Λ} reduces to $D^{\alpha_{3}, m_{3}}$ in the same situation (cf (3.29), (3.30), (3.31)) due to the following:
$\lim _{\epsilon \mapsto+0} G_{\Lambda\left(m_{3}+\epsilon\right)}(y)=\lim _{\epsilon \mapsto+0} \frac{N\left(\Lambda\left(m_{3}+\epsilon\right)\right)}{\left(y^{2}\right)^{\frac{1}{2}\left(3+m_{3}+\epsilon\right)}} \sim \lim _{\epsilon \mapsto+0} \frac{\epsilon}{\left(y^{2}\right)^{\frac{1}{2}\left(3+m_{3}+\epsilon\right)}} \sim \square^{\frac{1}{2} m_{3}} \delta^{3}(y)$
(cf $[48,43,49]$) and then we have
$\left(A_{\Lambda} \hat{\varphi}\right)(y) \sim \int \square^{\frac{1}{2} m_{3}} \delta^{3}\left(y-y^{\prime}\right) \hat{\varphi}\left(y^{\prime}\right) \mathrm{d}^{3} y^{\prime}=\square^{\frac{1}{2} m_{3}} \hat{\varphi}(y)=D^{\alpha_{3}, m_{3}} \hat{\varphi}(y)$.
${ }^{3}$ This question will be discussed in more detail in [44].
4 The y-dependence of $G_{\Lambda}(y)$ was given first in [45] for arbitrary spacetime dimension D (replace $3+m$ with $D+m$), the group theory interpretation belongs to mathematical [46] and physical [47] work, for the interpretation of $N(\Lambda)$ and more details we refer to [43].

For the same values $m_{3} \in 2 \mathbb{N}$ the operator $A_{\Lambda^{\prime}}$ remains integral and acts in the opposite direction w.r.t. $D^{\alpha_{3}, m_{3}}$ on diagram (3.25) (in the case $\alpha=\alpha_{3}$) and diagram (3.33) (two occurrences). This is the reason why we mention the integral operators. (Note that (3.40) remains valid also for $m_{3}=0$ when $\Lambda^{\prime}=\Lambda$ and the operator A_{Λ} reduces to the identity operator $\mathrm{id}_{C^{\wedge}}$.)

4. Invariant differential operators and equations related to UIRs

The differential operators related to the unitary cases correspond to the singular vectors in (3.24) and are given as follows:

$$
\begin{align*}
D^{\alpha_{1}, m}= & \partial_{z}^{m}, \quad m=m_{1}=p+1=2 s_{0}+1 \in \mathbb{N}, \tag{4.1a}\\
D^{\alpha_{3}, 1}= & s_{0}\left(\partial_{x}-2 z \partial_{u}\right)+\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z}, \quad m_{3}=1, \tag{4.1b}\\
D^{\alpha_{3}, 2}= & \left(1-4 s_{0}^{2}\right)\left(\partial_{x}-2 z \partial_{u}\right)^{2}-4\left(1-2 s_{0}\right) \partial_{u}\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \\
& +4\left(1-2 s_{0}\right)\left(\partial_{x}-2 z \partial_{u}\right)\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z} \\
& -4\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right)^{2} \partial_{z}^{2}, \quad m_{3}=2, \tag{4.1c}\\
D^{a_{4}, 1}= & 2 s_{0}\left(2 s_{0}-1\right) \partial_{u}+\left(2 s_{0}-1\right)\left(\partial_{x}-2 z \partial_{u}\right) \partial_{z} \\
& +\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z}^{2}, \quad m_{4}=1 . \tag{4.1d}
\end{align*}
$$

Next we analyse the important cases separately.

4.1. Rac

In this case the energy and spin are $E_{0}=\frac{1}{2}, s_{0}=0$. The equations are (4.1a) and (4.1c) (cf also (3.29)):

$$
\begin{align*}
& \partial_{z} \hat{\varphi}=0 \tag{4.2a}\\
& D^{\alpha_{3}, 2} \hat{\varphi}=\left\{\left(\partial_{x}-2 z \partial_{u}\right)^{2}-4 \partial_{u}\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right)\right. \\
& \left.+4\left(\partial_{x}-2 z \partial_{u}\right)\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z}-4\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right)^{2} \partial_{z}^{2}\right\} \hat{\varphi} \\
& =\left(\partial_{x}^{2}-4 \partial_{u} \partial_{v}\right) \hat{\varphi}=\square \hat{\varphi}=\hat{\varphi}^{\prime} . \tag{4.2b}
\end{align*}
$$

Note that the target space $C^{\Lambda^{\prime}}, \Lambda^{\prime}=\Lambda-\alpha_{3}$, is again of scalar functions ($s_{0}^{\prime}=0$) but is not unitary $\left(E_{0}^{\prime}=-\frac{1}{2}\right)$. Thus, $C^{\Lambda^{\prime}}$ is reducible, since the image $\left(\partial_{x}^{2}-4 \partial_{u} \partial_{v}\right) C^{\Lambda}$ cannot be onto $C^{\Lambda^{\prime}}$, the functions $\hat{\varphi}^{\prime}$ on the RHS belong to a proper subspace of $C^{\Lambda^{\prime}}$. Note that the Verma module $V^{\Lambda^{\prime}}$ is reducible only w.r.t. $(3.20 a)$ so that $m_{1}^{\prime}=m_{1}=1$, thus, the functions of $C^{\Lambda^{\prime}}$ obey only one differential equation: $\partial_{z} \hat{\varphi}^{\prime}=0$.

The Rac case is the lowest case of the subfamily in which the invariant operator is directly related to the d'Alembertian (cf (3.29)).

4.2. $D i$

In this case the energy and spin are $E_{0}=1, s_{0}=\frac{1}{2}$. The equations are (4.1a) and (4.1b)

$$
\begin{equation*}
\partial_{z}^{2} \hat{\varphi}=0, \tag{4.3a}
\end{equation*}
$$

$$
\begin{equation*}
D^{\alpha_{3}, 1} \hat{\varphi}=\left\{\frac{1}{2}\left(\partial_{x}-2 z \partial_{u}\right)+\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z}\right\} \hat{\varphi}=\hat{\varphi}^{\prime} . \tag{4.3b}
\end{equation*}
$$

The invariant equation (4.3b) has the advantage over the usual writing of the equation for the 'Di' field (cf [24]) since it is a scalar equation encompassing all information. It is also more easy to decompose the equation in components by setting

$$
\begin{equation*}
\hat{\varphi}_{\mathrm{Di}}=\hat{\varphi}_{0}+z \hat{\varphi}_{1}, \quad \partial_{z} \hat{\varphi}_{i}=0, \tag{4.4}
\end{equation*}
$$

and analogously for $\hat{\varphi}^{\prime}$ in (4.3b). Substituting the above in (4.3b) and extracting the coefficients of the resulting polynomial in z we have

$$
\begin{align*}
& \frac{1}{2} \partial_{x} \hat{\varphi}_{0}+\partial_{v} \hat{\varphi}_{1}=\hat{\varphi}_{0}^{\prime}, \tag{4.5a}\\
& \partial_{u} \hat{\varphi}_{0}+\frac{1}{2} \partial_{x} \hat{\varphi}_{1}=\hat{\varphi}_{1}^{\prime} . \tag{4.5b}
\end{align*}
$$

The first equation is the coefficient at z^{0} of (4.3b), the second is at z^{1}, while the coefficient at z^{2} is identically zero.

We now consider the kernel of the differential operator $D^{\alpha_{3}, 1}$, i.e., when the RHS of (4.3) and (4.5) are zero. Acting on (4.5a) by ∂_{x} and on (4.5b) by $-2 \partial_{v}$ and adding together, we obtain that $\hat{\varphi}_{0}$ fulfils the d'Alembert equation: $\left(\partial_{x}^{2}-4 \partial_{v} \partial_{u}\right) \hat{\varphi}_{0}=0$. We obtain the same for $\hat{\varphi}_{1}$ acting on (4.5b) by ∂_{x} and on (4.5a) by $-2 \partial_{u}$ and adding together. Thus, we recover the fact that the 'Di' fulfils the d'Alembert equation:

$$
\begin{equation*}
\left(\partial_{x}^{2}-4 \partial_{v} \partial_{u}\right) \hat{\varphi}_{D i}=0 . \tag{4.6}
\end{equation*}
$$

Of course, the full equations (4.3) (or in components (4.5)) contain more information than (4.6).

4.3. Massless representations

In this case the energy and spin are $E_{0}=s_{0}+1, s_{0}=1, \frac{3}{2}, \ldots$ The equations are (4.1a) and (4.1d)
$\partial_{z}^{p+1} \hat{\varphi}=0, \quad p=2 s_{0}=2,3, \ldots$,
$D^{\alpha_{4}, 1} \hat{\varphi}=\left\{p(p-1) \partial_{u}+(p-1)\left(\partial_{x}-2 z \partial_{u}\right) \partial_{z}+\left(\partial_{v}-z \partial_{x}+z^{2} \partial_{u}\right) \partial_{z}^{2}\right\} \hat{\varphi}=\hat{\varphi}^{\prime}$
Unlike the singleton cases the target space $C^{\Lambda^{\prime}}$ is unitary but not massless: it has $E_{0}^{\prime}=s_{0}^{\prime}+3, s_{0}^{\prime}=s_{0}-1,\left(p^{\prime}=p-2\right)$.

Thus, from the point of view of applications to physics these invariant equations relate a field of $\operatorname{spin} s_{0}$ to a field of $\operatorname{spin} s_{0}-1$. In the simplest case a vector field $s_{0}=1$ is coupled to a scalar field.

It is useful to write out (4.7b) in components using $\hat{\varphi}=\sum_{j=0}^{p} z^{j} \hat{\varphi}_{j}, \hat{\varphi}^{\prime}=\sum_{j=0}^{p-2} z^{j} \hat{\varphi}_{j}^{\prime}$. The result is $p-1$ equations:

$$
\begin{gather*}
(p-j)(p-j-1) \partial_{u} \hat{\varphi}_{j}+(j+1)(p-j-1) \partial_{x} \hat{\varphi}_{j+1}+(j+1)(j+2) \partial_{v} \hat{\varphi}_{j+2}=\hat{\varphi}_{j}^{\prime} \\
j=0,1, \ldots, p-2 . \tag{4.8}
\end{gather*}
$$

Further we restrict to the kernel of $D^{\alpha_{4}, 1}$. In the simplest case $p=2$, there is only one equation:

$$
\begin{equation*}
2 \partial_{u} \hat{\varphi}_{0}+\partial_{x} \hat{\varphi}_{1}+2 \partial_{v} \hat{\varphi}_{2}=0, \tag{4.9}
\end{equation*}
$$

which can be rewritten as equation for conserved current with the substitution:

$$
\begin{equation*}
\hat{\varphi}_{0}=J_{1}-\mathrm{i} J_{2}, \quad \hat{\varphi}_{1}=-J_{0}, \quad \hat{\varphi}_{2}=J_{1}+\mathrm{i} J_{2}, \tag{4.10}
\end{equation*}
$$

using also (3.30)

$$
\begin{equation*}
\partial_{0} J_{0}-\partial_{1} J_{1}-\partial_{2} J_{2}=0 \tag{4.11}
\end{equation*}
$$

Similarly, for arbitrary $p=2,3, \ldots$, there are $p-1$ independent conserved currents $J^{p, j}, j=0, \ldots, p-2$, with components as follows:

$$
\begin{align*}
J_{0}^{p, j} & =-(j+1)(p-j-1) \hat{\varphi}_{j+1} \\
J_{1}^{p, j} & =\frac{1}{2}\left\{(j+1)(j+2) \hat{\varphi}_{j+2}+(p-j)(p-j-1) \hat{\varphi}_{j}\right\} \tag{4.12}\\
J_{2}^{p, j} & =\frac{i}{2}\left\{(j+1)(j+2) \hat{\varphi}_{j+2}-(p-j)(p-j-1) \hat{\varphi}_{j}\right\} .
\end{align*}
$$

Finally, we would like to mention that all massless representations appear on diagram (3.33) in the case $m_{2}=1$. We would like to parametrize these diagrams by the spin of the massless irrep, i.e., by $s_{0}=1, \frac{3}{2}, \ldots$. In that case the signature of the ER C^{Λ} on the top-left corner is $\left(2 s_{0}-1,1,2 s_{0}+1,2 s_{0}\right)$ and this ER contains a finite-dimensional irrep of dimension: $s_{0}\left(4 s_{0}^{2}-1\right) / 3$. The massless UIR is contained in the ER in the bottom-right corner of (3.33), while the massive UIR of spin $s_{0}-1$ is in the ER in the top-right corner.

5. Classification of $\operatorname{so}(5, \mathbb{C})$ irreps

In view of possible applications relating character formulae to integrability we need first to classify the irreducible HWM over $\operatorname{so}(5, \mathbb{C})$. For this we use two important properties of Verma modules [50]:

- Every Verma module V^{Λ} contains a unique proper maximal submodule I^{Λ}.
- Every HWM is isomorphic to a factor-module of the Verma module with the same highest weight (universality property).
Thus, among the HWM with highest weight Λ there is a unique irreducible one, denoted by L_{Λ}, i.e.

$$
\begin{equation*}
L_{\Lambda}=V^{\Lambda} / I^{\Lambda} \tag{5.1}
\end{equation*}
$$

Clearly, if the Verma module V^{L} is irreducible then $L_{\Lambda}=V^{\Lambda}$. Thus, we need to classify the reducible Verma modules.

It is convenient for such classification to use the notion of a multiplet [31] of highest weight modules. We say that a set \mathcal{M} of highest weight modules forms a multiplet if (1) $V \in \mathcal{M} \Rightarrow \mathcal{M} \supset \mathcal{M}_{V}$, where \mathcal{M}_{V} is the set of all highest weight modules $V^{\prime} \neq V$ such that either V^{\prime} is isomorphic to a submodule of V or V is isomorphic to a submodule of V^{\prime}; (2) \mathcal{M} does not have proper subsets fulfilling (1). It is convenient to depict a multiplet by a connected oriented graph, the vertices of which correspond to the highest weight modules and the arrows between the vertices correspond to the embeddings between the modules. Most often only the embeddings which are not compositions of other embeddings are depicted, since these contain all the relevant information.

Further we shall restrict the notion of a multiplet to the category of Verma modules. We also need the notion of types of multiplets. We say that two multiplets belong to the same type, if they are depicted by the same graph and differ only by the values of some parameter(s).

The classification can be summarized as follows. There are four types of multiplets of reducible Verma modules: type \mathcal{N} with four subtypes: $\mathcal{N}_{k}, k=1,2,3,4$; type $\mathcal{F}_{m_{1}, m_{2}}$, $\left(m_{1}, m_{2} \in \mathbb{N}\right)$; type $\mathcal{S}_{m_{1}, m_{3}},\left(m_{1}, m_{3} \in \mathbb{N}, \frac{1}{2}\left(m_{1}+m_{3}\right) \notin \mathbb{Z}\right)$; type \mathcal{L} with two subtypes: $\mathcal{L}_{k}, k=1,2$, as given explicitly below.

Figure 1. Multiplets of type $\mathcal{F}_{m_{1}, m_{2}}$.

Multiplets of type \mathcal{N} are given as follows. Fix $k=1,2,3,4$ to fix a subtype \mathcal{N}_{k}. Then the multiplets of this subtype are parametrized by the natural number m_{k} and are given as follows:
$V^{\Lambda_{k}} \longrightarrow V^{\Lambda_{k}-m_{k} \alpha_{k}}, \quad m_{k}\left(\Lambda_{k}\right)=m_{k} \in \mathbb{N}, \quad m_{j}\left(\Lambda_{k}\right) \notin \mathbb{N}, \quad j \neq k$,
$L_{\Lambda_{k}}=V^{\Lambda_{k}} / V^{\Lambda_{k}-m_{k} \alpha_{k}}$.
Note that we are using the convention that the arrows point to the embedded modules. The modules $V^{\Lambda_{k}-m_{k} \alpha_{k}}$ are irreducible. (The last statement is trivial for $k=1,2$ from (3.19). For $k=3$ we need to check that $m_{j}\left(\Lambda_{3}\right) \notin-\mathbb{N}$ for $j=2,4$ which is easy since supposing that $m_{2}\left(\Lambda_{3}\right) \in-\mathbb{N}$ leads to $m_{4}\left(\Lambda_{3}\right) \in \mathbb{N}$ which is already excluded, and similarly interchanging $2 \leftrightarrow 4$. For $k=4$ we need to check that $m_{j}\left(\Lambda_{4}\right) \notin-\mathbb{N}$ for $j=1,3$ which is proved similarly to the case $k=3$.)

Remark. Under the same conditions the ER counterpart of (5.2) is given by (3.25).
Multiplets of type $\mathcal{F}_{m_{1}, m_{2}}$ are parametrized by two natural numbers m_{1}, m_{2}. They are given as follows: we have given the multiplets in two ways-in figure $1(A)$ the Verma modules are depicted by their highest weights, while in figure $1(B)$ they are given by the explicit signatures. Thus, we see that the parametrizing numbers m_{1}, m_{2} are related to the Verma module $V^{\Lambda_{m_{1}, m_{2}}}$ on the top: $m_{k}=m_{k}\left(\Lambda_{m_{1}, m_{2}}\right)$. The numbers at the embedding arrows indicate w.r.t. which root is the embedding. All Verma modules of these multiplets, except $V^{\Lambda^{\prime}}$, are reducible and their weights are given explicitly as follows:

$$
\begin{align*}
& \Lambda_{m_{1}, m_{2}}, \quad m_{k}=m_{k}\left(\Lambda_{m_{1}, m_{2}}\right) \in \mathbb{N}, \quad \forall k, \\
& \Lambda_{m_{1}, m_{2}}^{i}=\Lambda_{m_{1}, m_{2}}-m_{i} \alpha_{i}, \quad i=1,2, \\
& \Lambda_{m_{1}, m_{2}}^{i j}=\Lambda_{m_{1}, m_{2}}-m_{i} \alpha_{i}-m_{j+2} \alpha_{j}, \quad(i, j)=(1,2),(2,1), \tag{5.3}\\
& \Lambda_{m_{1}, m_{2}}^{i j i}=\Lambda_{m_{1}, m_{2}}-\left(m_{i}+m_{i+2}\right) \alpha_{i}-m_{j+2} \alpha_{j}, \quad(i, j)=(1,2),(2,1) .
\end{align*}
$$

The weights of the irreducible modules $V^{\Lambda^{\prime}}$ are $\Lambda^{\prime}=\Lambda_{m_{1}, m_{2}}-\left(m_{1}+m_{3}\right) \alpha_{1}-\left(m_{2}+m_{4}\right) \alpha_{2}=$ $\Lambda-2 m_{4} \alpha_{1}-m_{3} \alpha_{2}$. Note that only embeddings which are not compositions of other

Figure 2. Multiplets of type $\mathcal{S}_{m_{1}, m_{3}}$.
embeddings are given in figure 1. In fact, several composite embeddings according to the second lines of $\left(3.16 c^{\prime}\right)$ and $\left(3.16 d^{\prime}\right)$ are present in figure 1.

Remark. To obtain the ER counterpart of figure 1 we need to exclude four spaces with unphysical signatures ($m_{1}^{\prime} \notin \mathbb{N}$), and to restore some operators which were compositions in figure 1 . Thus, the ER counterpart is given by (3.33).

Multiplets of type $\mathcal{S}_{m_{1}, m_{3}}$ are parametrized by two natural numbers m_{1}, m_{3} of different parity so that $\frac{1}{2}\left(m_{1}+m_{3}\right) \notin \mathbb{Z}$. They are given in figure 2 where as above we have given the multiplet in two ways, and again the parametrizing numbers m_{1}, m_{3} are related to the Verma module $V^{\Lambda^{s}}$ on the top: $m_{k}=m_{k}\left(\Lambda^{s}\right), k=1,3$. Note that the supplementary condition on these numbers ensures that $m_{k}=m_{k}\left(\Lambda^{s}\right) \notin \mathbb{N}, k=2,4$, since $m_{2}\left(\Lambda^{s}\right)=$ $\frac{1}{2}\left(m_{3}-m_{1}\right), m_{4}\left(\Lambda^{s}\right)=\frac{1}{2}\left(m_{3}+m_{1}\right)$. The Verma modules of these multiplets, except $V^{\Lambda^{\prime \prime}}$, are reducible and their weights are given explicitly as follows:
$\Lambda^{s}, \quad m_{k}=m_{k}\left(\Lambda^{s}\right) \in \mathbb{N}, \quad k=1,3, \quad m_{k}=m_{k}\left(\Lambda^{s}\right) \notin \mathbb{N}, \quad k=2,4$,
$\Lambda_{k}^{s}=\Lambda^{s}-m_{k} \alpha_{k}, \quad k=1,3$.
The weights of the irreducible modules $V^{\Lambda^{\prime \prime}}$ are $\Lambda^{\prime \prime}=\Lambda^{s}-m_{1} \alpha_{1}-m_{3} \alpha_{3}$.
Remark. To obtain the ER counterpart of figure 2 we need to exclude two spaces with unphysical signatures ($m_{1}^{\prime} \notin \mathbb{N}$). Thus, the ER counterpart is given by (3.25) for $\alpha=\alpha_{3}$.

Multiplets of type \mathcal{L} are given as follows. Fix $k=1,2$ to fix a subtype \mathcal{L}_{k}. Then the multiplets are parametrized by the natural number m and are given as follows.

The multiplets of subtype \mathcal{L}_{1} are given in figure 3. The weights of the reducible Verma modules are given as follows:
$\Lambda_{m}^{1}, \quad m_{2}\left(\Lambda_{m}^{1}\right)=m_{4}\left(\Lambda_{m}^{1}\right)=m \in \mathbb{N}, \quad m_{3}\left(\Lambda_{m}^{1}\right)=2 m, \quad m_{1}\left(\Lambda_{m}^{1}\right)=0$,
$\Lambda_{m}^{12}=\Lambda_{m}^{1}-m \alpha_{2}$,
$\Lambda_{m}^{121}=\Lambda_{m}^{1}-m \alpha_{4}$.
The weights of the irreducible modules $V^{\Lambda_{m}^{\prime}}$ are $\Lambda_{m}^{\prime}=\Lambda_{m}^{1}-2 m \alpha_{3}$. Note that this embedding picture is actually a special case of the factorization of the singular vector $v^{\alpha_{3}, m_{3}}$ according to the second line of (3.16 c^{\prime}) for $m_{1}=0, m_{2}=m$.

The multiplets of subtype \mathcal{L}_{2} are given in figure 4 . The weights of the reducible Verma modules are given as follows:
$\Lambda_{m}^{2}, \quad m_{1}\left(\Lambda_{m}^{2}\right)=m_{3}\left(\Lambda_{m}^{2}\right)=m_{4}\left(\Lambda_{m}^{2}\right)=m \in \mathbb{N}, \quad m_{2}\left(\Lambda_{m}^{2}\right)=0$,
$\Lambda_{m}^{21}=\Lambda_{m}^{2}-m \alpha_{1}$,
$\Lambda_{m}^{212}=\Lambda_{m}^{2}-m \alpha_{3}$.

Figure 3. Multiplets of subtype \mathcal{L}_{1}

Figure 4. Multiplets of subtype \mathcal{L}_{2}.

The weights of the irreducible modules $V^{\Lambda_{m}^{\prime \prime}}$ are $\Lambda_{m}^{\prime \prime}=\Lambda_{m}^{2}-m \alpha_{4}$. Note that this embedding picture is a special case of the factorization of the singular vector $v^{\alpha_{4}, m_{4}}$ according to the second line of $\left(3.16 d^{\prime}\right)$ for $m_{2}=0, m_{1}=m$.

We can summarize the classification of the reducible Verma modules as follows:
Proposition. All reducible Verma modules over so $(5, \mathbb{C})$ are explicitly parametrized by the following highest weights: Λ_{k} from (5.2), $\Lambda_{m_{1}, m_{2}}, \Lambda_{m_{1}, m_{2}}^{i}, \Lambda_{m_{1}, m_{2}}^{i j}, \Lambda_{m_{1}, m_{2}}^{i j j}$ from (5.3), $\Lambda^{s}, \Lambda_{k}^{s}$ from (5.4), $\Lambda_{m}^{1}, \Lambda_{m}^{12}, \Lambda_{m}^{121}$ from (5.5), $\Lambda_{m}^{2}, \Lambda_{m}^{21}, \Lambda_{m}^{212}$ from (5.6). The same highest weights parametrize all irreps L_{Λ} for which V^{Λ} are reducible. All irreps are infinite dimensional, except $L_{m_{1}, m_{2}} \equiv L_{\Lambda_{m_{1}, m_{2}}}$. The latter are the holomorphic finite-dimensional irreps of so $(5, \mathbb{C})$ of dimension $m_{1} m_{2} m_{3} m_{4} / 6$, which are isomorphic to the finite-dimensional non-unitary irreps of $\operatorname{so}(3,2)$.

We note important property of reduction of multiplets. The multiplet, \mathcal{L}_{1}, would be obtained from the multiplets of type $\mathcal{F}_{m_{1}, m_{2}}$ if we formally set $m_{1}=0$ (and then $m_{2}=m$), since the eight modules coincide pairwise reducing the multiplet to four modules (the notation was chosen suggestively). Analogously, the multiplet, \mathcal{L}_{2}, would be obtained from the multiplets
of type $\mathcal{F}_{m_{1}, m_{2}}$ if we formally set $m_{2}=0$ (and then $m_{1}=m$). The opposite process would go from figure 2 if we suppose that $m_{2}, m_{4} \in \mathbb{N}$, since then the two singular vectors $v^{\alpha_{3}, m_{3}}$ would decompose according to the second line of $\left(3.16 c^{\prime}\right)$ and four new reducible modules would appear restoring figure 1 .

6. Character formulae of AdS irreps and possible applications to integrability

6.1. Character formulae of AdS irreps

The question of reducibility of Verma modules is closely related to the corresponding Weyl groups. In particular, whenever (3.12) is fulfilled, then the shifted weight is given by the corresponding Weyl reflection. We recall that by definition the Weyl reflection in \mathcal{H}^{*} is the following action:

$$
\begin{equation*}
s_{\alpha}(\Lambda) \doteq \Lambda-\left(\Lambda, \alpha^{\vee}\right) \alpha \tag{6.1}
\end{equation*}
$$

Using this we can define also a 'dot'-action:

$$
\begin{equation*}
s_{\alpha} \cdot(\Lambda) \doteq s_{\beta}(\Lambda+\rho)-\rho \tag{6.2}
\end{equation*}
$$

Thus, we see that the shifted weight Λ^{\prime} in (3.13) is given by (using (3.12))

$$
\begin{equation*}
\Lambda^{\prime}=\Lambda-m \beta=\Lambda-\left(\Lambda+\rho, \beta^{\vee}\right) \beta=s_{\beta}(\Lambda+\rho)-\rho=s_{\beta} \cdot(\Lambda) \tag{6.3}
\end{equation*}
$$

The group generated by the Weyl reflections is called the Weyl group W. In fact, it is generated by the simple reflections s_{α}, where α runs through all simple roots. Since the Weyl group is generated by the simple reflections, then every element $w \in W$ may be written as the product of some simple reflections. Every such product which uses a minimal number of simple reflections is called a reduced expression or reduced form for w. The number of simple reflections in a reduced form is called the length of w and is denoted by $\ell(w)$. In our case, $\mathcal{G}^{\mathbb{C}}=\operatorname{so}(5, \mathbb{C})=B_{2}$, the Weyl group $W_{B_{2}}$ has eight elements explicitly given in reduced form by ($s_{k} \equiv s_{\alpha_{k}}$)
$W_{B_{2}}=\left\{1, s_{1}, s_{2}, s_{1} s_{2}, s_{2} s_{1}, s_{3}=s_{2} s_{1} s_{2}, s_{4}=s_{1} s_{2} s_{1}, s_{1} s_{2} s_{1} s_{2}=s_{2} s_{1} s_{2} s_{1}\right\}$.
Let \mathcal{G} be any simple Lie algebra. Let Γ (resp. Γ_{+}) be the set of all integral (resp. integral dominant) elements of \mathcal{H}^{*}, i.e., $\Lambda \in \mathcal{H}^{*}$ such that $\left(\Lambda, \alpha_{i}^{\vee}\right) \in \mathbb{Z}$, (resp. \mathbb{Z}_{+}), for all simple roots α_{i}. We recall that for each invariant subspace $V \subset U\left(\mathcal{G}_{+}\right) \otimes v_{0} \cong V^{\Lambda}$ we have the following decomposition:

$$
\begin{equation*}
V=\underset{\mu \in \Gamma_{+}}{\oplus} V_{\mu}, \quad V_{\mu}=\left\{u \in V \mid H_{k} u=(\Lambda+\mu)\left(H_{k}\right) u, \forall H_{k}\right\} \tag{6.5}
\end{equation*}
$$

(Note that $V_{0}=\mathbb{C} v_{0}$.) Following [50, 51] let $E\left(\mathcal{H}^{*}\right)$ be the associative Abelian algebra consisting of the series $\sum_{\mu \in \mathcal{H}^{*}} c_{\mu} \mathrm{e}^{\mu}$, where $c_{\mu} \in \mathbb{C}, c_{\mu}=0$ for μ outside the union of a finite number of sets of the form $D(\Lambda)=\left\{\mu \in \mathcal{H}^{*} \mid \mu \leqslant \Lambda\right\}$, using any ordering of \mathcal{H}^{*}.

The character of V is defined by

$$
\begin{equation*}
\text { ch } V=\sum_{\mu \in \Gamma_{+}}\left(\operatorname{dim} V_{\mu}\right) \mathrm{e}^{\Lambda+\mu}=\mathrm{e}^{\Lambda} \sum_{\mu \in \Gamma_{+}}\left(\operatorname{dim} V_{\mu}\right) \mathrm{e}^{\mu} \tag{6.6}
\end{equation*}
$$

We recall [50] that for $V=V^{\Lambda}$ we have $\operatorname{dim} V_{\mu}=P(\mu), P(\mu)$ is a generalized partition function, $P(\mu)=\#$ of ways μ can be presented as a sum of positive roots β_{j}, each root taken with its multiplicity $m_{j}=\operatorname{dim} \mathcal{G}_{\beta_{j}}$ (here $m_{j}=1$), $P(0) \equiv 1$. Analogously we use [50] to obtain

$$
\begin{equation*}
\operatorname{ch} V^{\Lambda}=\mathrm{e}^{\Lambda} \sum_{\mu \in \Gamma_{+}} P(\mu) \mathrm{e}^{\mu}=\mathrm{e}^{\Lambda} \prod_{\alpha \in \Delta^{+}}\left(1-\mathrm{e}^{\alpha}\right)^{-1} \tag{6.7}
\end{equation*}
$$

The Weyl character formula for the finite-dimensional irreducible highest weight representations over \mathcal{G} has the form [50]

$$
\begin{equation*}
\operatorname{ch} L_{\Lambda}=\operatorname{ch} V^{\Lambda} \sum_{w \in W}(-1)^{\ell(w)} \mathrm{e}^{w \cdot \Lambda-\Lambda}=\sum_{w \in W}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda} \tag{6.8}
\end{equation*}
$$

Let $\mathcal{G}=\operatorname{so}(5, \mathbb{C})$, or $\mathcal{G}=\operatorname{so}(3,2)$. Then the character formula for the finite-dimensional irreps (6.8) can be rewritten as

$$
\begin{align*}
& \operatorname{ch} L_{m_{1}, m_{2}}=\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}}\left(1-\mathrm{e}^{\alpha_{1} m_{1}}-\mathrm{e}^{\alpha_{2} m_{2}}+\mathrm{e}^{\alpha_{1} m_{1}} \mathrm{e}^{\alpha_{2}\left(m_{1}+m_{2}\right)}\right. \\
&\left.+\mathrm{e}^{\alpha_{1} m_{1}+2 m_{2}} \mathrm{e}^{\alpha_{2} m_{2}}-\mathrm{e}^{\alpha_{4} m_{4}}-\mathrm{e}^{\alpha_{3} m_{3}}+\mathrm{e}^{2 \alpha_{1} m_{4}} \mathrm{e}^{\alpha_{2} m_{3}}\right) . \tag{6.9}
\end{align*}
$$

Derivation of (6.9). It is easy to derive the above formula using the embedding diagram in figure $1(A)$. We use the general fact that from (5.1) follows:

$$
\begin{equation*}
\operatorname{ch} L_{\Lambda}=\operatorname{ch} V^{\Lambda}-\operatorname{ch} I^{\Lambda} \tag{6.10}
\end{equation*}
$$

Now it is clear that ch $I^{\Lambda_{m_{1}, m_{2}}}$ contains the terms

$$
\begin{equation*}
\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{1}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{2}} \tag{6.11}
\end{equation*}
$$

since $V^{\Lambda_{m_{1}, m_{2}}^{1}}$ and $V^{\Lambda_{m_{1}, m_{2}}^{2}}$ are submodules of $V^{\Lambda_{m_{1}, m_{2}}}$, however, the sum in (6.11) is larger than ch $I^{\Lambda_{m_{1}, m_{2}}}$ because of the overlap. Indeed, both $V^{\Lambda_{m_{1}, m_{2}}^{1}}$ and $V^{\Lambda_{m_{1}, m_{2}}^{2}}$ contain as submodules $V^{\Lambda_{m_{1}, m_{2}}^{12}}$ and $V^{\Lambda_{m_{1}, m_{2}}^{21}}$. Thus the latter are contained in (6.11) two times. To correct this over-counting we should subtract their characters and replace (6.11) by

$$
\begin{equation*}
\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{1}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{2}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{12}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{21}} \tag{6.12}
\end{equation*}
$$

However, now there is under-counting since both $V^{\Lambda_{m_{1}, m_{2}}^{12}}$ and $V^{\Lambda_{m_{1}, m_{2}}^{21}}$ contain as submodules $V^{\Lambda_{m_{1}, m_{2}}^{121}}$ and $V^{\Lambda_{m_{1}, m_{2}}^{212}}$. To correct this under-counting we should add their characters and replace (6.12) by
ch $V^{\Lambda_{m_{1}, m_{2}}^{1}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{2}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{12}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{21}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{12}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{212}}$.
Now the module $V^{\Lambda^{\prime}}$ is over-counted. Thus, the final formula for ch $I^{\Lambda_{m_{1}, m_{2}}}$ is

$$
\begin{gather*}
\operatorname{ch} I^{\Lambda_{m_{1}, m_{2}}}=\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{1}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{2}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{12}}-\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{21}} \\
+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{211}}+\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{22}}-\operatorname{ch} V^{\Lambda^{\prime}} . \tag{6.14}
\end{gather*}
$$

Substituting (6.14) in (6.10), using the explicit values of the various highest weights from (5.3) we recover (6.9).

The character formulae for the infinite-dimensional irreducible highest weight representations involve less terms than in (6.9) since the maximal invariant submodules I^{Λ} of V^{Λ} are smaller. It is easy to derive these using the same considerations as above, so we just list the results.

- The character formulae for the irreps with highest weights Λ_{1} from (5.2), $\Lambda_{m_{1}, m_{2}}^{212}$ from (5.3), Λ_{3}^{s} from (5.4), Λ_{m}^{12} from (5.5), Λ_{m}^{2} and Λ_{m}^{212} from (5.6), are

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda}=\sum_{w \in W_{1}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda}=\operatorname{ch} V^{\Lambda}\left(1-\mathrm{e}^{m_{1} \alpha_{1}}\right), \tag{6.15}\\
& W_{1}=\left\{1, s_{1}\right\}
\end{align*}
$$

where Λ denotes all highest weights under consideration and m_{1} should be replaced by m for the cases from (5.5) and (5.6).

- The character formula for the irreps with highest weights Λ_{2} from (5.2), $\Lambda_{m_{1}, m_{2}}^{121}$ from (5.3), Λ_{m}^{1} and Λ_{m}^{121} from (5.5), Λ_{m}^{21} from (5.6), is

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda}=\sum_{w \in W_{2}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda}=\operatorname{ch} V^{\Lambda}\left(1-\mathrm{e}^{m_{2} \alpha_{2}}\right) \tag{6.16}\\
& W_{2}=\left\{1, s_{2}\right\}
\end{align*}
$$

where Λ denotes all highest weights under consideration and m_{2} should be replaced by m for the cases (5.5) and (5.6).

- The character formula for the irreps with highest weights Λ_{3} from (5.2), Λ_{1}^{s} from (5.4), is

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda}=\sum_{w \in W_{3}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda}=\operatorname{ch} V^{\Lambda}\left(1-\mathrm{e}^{m_{3} \alpha_{3}}\right), \tag{6.17}\\
& W_{3}=\left\{1, s_{3}\right\}
\end{align*}
$$

where Λ denotes all highest weights under consideration.

- The character formula for the irreps with highest weights Λ_{4} from (5.2) is

$$
\begin{aligned}
& \operatorname{ch} L_{\Lambda_{4}}=\sum_{w \in W_{4}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda_{4}}=\operatorname{ch} V^{\Lambda_{4}}\left(1-\mathrm{e}^{m_{4} \alpha_{4}}\right) \\
& W_{4}=\left\{1, s_{4}\right\}
\end{aligned}
$$

- The character formula for the irreps with highest weights Λ^{s} from (5.4) is

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda^{s}}=\sum_{w \in W^{s}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda^{s}} \\
&=\operatorname{ch} V^{\Lambda^{s}}\left(1-\mathrm{e}^{\alpha_{1} m_{1}}-\mathrm{e}^{\alpha_{3} m_{3}}+\mathrm{e}^{\alpha_{1} m_{1}+\alpha_{3} m_{3}}\right), \tag{6.19}\\
& W^{s}=\left\{1, s_{1}, s_{3}, s_{1} s_{3}\right\}=W_{1} \times W_{3}
\end{align*}
$$

- The character formula for the irreps with highest weights $\Lambda_{m_{1}, m_{2}}^{12}$ from (5.3) is

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda_{m_{1}, m_{2}}^{12}}=\sum_{w \in W^{12}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda_{m_{1}, m_{2}}^{12}} \\
& \quad=\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{12}}\left(1-\mathrm{e}^{\alpha_{1} m_{3}}-\mathrm{e}^{\alpha_{4} m_{2}}+\mathrm{e}^{\alpha_{1} m_{3}+\alpha_{2} m_{2}}\right) \tag{6.20}\\
& W^{12}=\left\{1, s_{1}, s_{2} s_{1}, s_{1} s_{2} s_{1}\right\}
\end{align*}
$$

- The character formula for the irreps with highest weights $\Lambda_{m_{1}, m_{2}}^{21}$ from (5.3) is

$$
\begin{aligned}
\operatorname{ch} L_{\Lambda_{m_{1}, m_{2}}^{22}} & =\sum_{w \in W^{21}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda_{m_{1}, m_{2}}^{21}} \\
& =\operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{21}}\left(1-\mathrm{e}^{\alpha_{2} m_{4}}-\mathrm{e}^{\alpha_{3} m_{1}}+\mathrm{e}^{\alpha_{1} m_{1}+\alpha_{2} m_{4}}\right), \\
W^{21}=\{1, & \left.s_{2}, s_{1} s_{2}, s_{2} s_{1} s_{2}\right\} .
\end{aligned}
$$

- The character formula for the irreps with highest weights $\Lambda_{m_{1}, m_{2}}^{1}$ from (5.3) is

$$
\left.\begin{array}{rl}
\operatorname{ch} L_{\Lambda_{m_{1}, m_{2}}^{1}}= & \sum_{w \in W^{1}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda_{m_{1}, m_{2}}^{1}} \\
= & \operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{1}}\left(1-\mathrm{e}^{\alpha_{2} m_{4}}-\mathrm{e}^{\alpha_{4} m_{2}}+\mathrm{e}^{\alpha_{1} m_{3}+\alpha_{2} m_{4}}\right. \tag{6.22}\\
& \left.\quad+\mathrm{e}^{\alpha_{2} m_{4}+\alpha_{4} m_{2}}-\mathrm{e}^{\alpha_{1} m_{3}+\alpha_{2} m_{3}}\right)
\end{array}\right), ~\left\{\begin{array}{l}
W^{1}=\left\{1, s_{2}, s_{1} s_{2}, s_{2} s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{2} s_{1} s_{2} s_{1}\right\} .
\end{array}\right.
$$

- The character formula for the irreps with highest weights $\Lambda_{m_{1}, m_{2}}^{2}$ from (5.3) is

$$
\begin{align*}
\operatorname{ch} L_{\Lambda_{m_{1}, m_{2}}^{2}}= & \sum_{w \in W^{2}}(-1)^{\ell(w)} \operatorname{ch} V^{w \cdot \Lambda_{m_{1}, m_{2}}^{2}} \\
= & \operatorname{ch} V^{\Lambda_{m_{1}, m_{2}}^{2}}\left(1-\mathrm{e}^{\alpha_{1} m_{3}}-\mathrm{e}^{\alpha_{3} m_{1}}+\mathrm{e}^{\alpha_{1} m_{3}+\alpha_{2} m_{4}}\right. \\
& \left.+\mathrm{e}^{\alpha_{1} m_{3}+\alpha_{3} m_{1}}-\mathrm{e}^{2 \alpha_{1} m_{4}+\alpha_{2} m_{4}}\right) \\
W^{2}=\left\{1, s_{1},\right. & \left.s_{2} s_{1}, s_{2} s_{1} s_{2}, s_{1} s_{2} s_{1}, s_{2} s_{1} s_{2} s_{1}\right\} . \tag{6.23}
\end{align*}
$$

Note that each of the Weyl groups $W_{k}, k=1,2,3,4$, is isomorphic to the $A_{1}=\operatorname{sl}(2)$ Weyl group, while the Weyl group W^{s} is the direct product of two such A_{1} Weyl groups. In contrast, the subsets of W over which is carried the summation in the last four cases, namely, $W^{1}, W^{2}, W^{12}, W^{21}$ are not considered subgroups of W, since then the elements of these subsets will generate the whole W.

6.2. Character formulae of positive energy UIRs

Here we apply the character formulae of the previous subsection to the positive energy UIRs of $\operatorname{so}(3,2)$.
6.2.1. Rac. We have $m_{1}=1, m_{2}=1 / 2$, i.e., we have a special case of (6.19):

$$
\text { ch } \begin{align*}
L_{\mathrm{Rac}} & =\operatorname{ch} V^{\Lambda^{s}}\left(1-\mathrm{e}^{\alpha_{1}}-\mathrm{e}^{2 \alpha_{3}}+\mathrm{e}^{\alpha_{1}+2 \alpha_{3}}\right) \tag{6.24a}\\
& =e\left(\Lambda^{s}\right)\left(1-\mathrm{e}^{2 \alpha_{3}}\right) /\left(1-\mathrm{e}^{\alpha_{2}}\right)\left(1-\mathrm{e}^{\alpha_{3}}\right)\left(1-\mathrm{e}^{\alpha_{4}}\right) \tag{6.24b}\\
& =e\left(\Lambda^{s}\right)\left(1+\mathrm{e}^{\alpha_{3}}\right) /\left(1-\mathrm{e}^{\alpha_{2}}\right)\left(1-\mathrm{e}^{\alpha_{4}}\right) \tag{6.24c}\\
& =e\left(\Lambda^{s}\right) \sum_{n=0}^{\infty} \mathrm{e}^{n \alpha_{3}} \sum_{p=-n}^{n} \mathrm{e}^{p \alpha_{1}} \tag{6.24d}\\
& =e(\Lambda) \sum_{n=0}^{\infty} \sum_{p=-n}^{n} \mathrm{e}^{\left(n-|p| \mid \alpha_{3}\right.} t^{\prime|p|}, \tag{6.24e}
\end{align*}
$$

where

$$
t^{\prime}= \begin{cases}e\left(\alpha_{4}\right) & \text { for } \quad p \geqslant 0 \\ e\left(\alpha_{2}\right) & \text { for } \quad p<0\end{cases}
$$

Character formula (6.24) is equivalent to the spectrum description given in [33] and clearly each term has different weight from all others, which explains the terminology of singleton.
6.2.2. Di. We have $m_{1}=2, m_{2}=-1 / 2$, i.e., again a special case of (6.19):

$$
\begin{align*}
\operatorname{ch} L_{\mathrm{Di}} & =\operatorname{ch} V^{\Lambda^{s}}\left(1-\mathrm{e}^{2 \alpha_{1}}-\mathrm{e}^{\alpha_{3}}+\mathrm{e}^{2 \alpha_{1}+\alpha_{3}}\right) \tag{6.25a}\\
& =e\left(\Lambda^{s}\right)\left(1-\mathrm{e}^{2 \alpha_{1}}\right) /\left(1-\mathrm{e}^{\alpha_{1}}\right)\left(1-\mathrm{e}^{\alpha_{2}}\right)\left(1-\mathrm{e}^{\alpha_{4}}\right) \tag{6.25b}\\
& =e\left(\Lambda^{s}\right)\left(1+\mathrm{e}^{\alpha_{1}}\right) /\left(1-\mathrm{e}^{\alpha_{2}}\right)\left(1-\mathrm{e}^{\alpha_{4}}\right) \tag{6.25c}\\
& =e\left(\Lambda^{s}\right) \sum_{n=0}^{\infty} \mathrm{e}^{n \alpha_{3}} \sum_{p=-n}^{n+1} \mathrm{e}^{p \alpha_{1}} \tag{6.25d}
\end{align*}
$$

$$
\begin{equation*}
=e\left(\Lambda^{s}\right) \sum_{n=0}^{\infty} \mathrm{e}^{n \alpha_{2}} \sum_{r=0}^{2 n+1} \mathrm{e}^{r \alpha_{1}} \tag{6.25e}
\end{equation*}
$$

Character formula (6.25) is equivalent to the singleton spectrum description given in [33].
6.2.3. Spin zero. Next we consider the case $s_{0}=0, E_{0}>1 / 2$ (cf (3.23), (3.24)) and the text in-between. We have only the singular vector $v^{\alpha_{1}, 1}$. This is clear for $E_{0} \neq 1$, while for $E_{0}=1$ one should note that for $s_{0}=0$ the singular vectors $v^{\alpha_{3}, 1}$ in (3.24c) and $v^{\alpha_{4}, 1}$ in (3.24d) are descendants of $v^{\alpha_{1}, 1}$. In fact, for $E_{0} \neq 1$ the Verma module is $V^{\Lambda_{1}}$ from a multiplet of subtype \mathcal{N}_{1} for parameter $m_{1}=1$, while for $E_{0}=1$ the Verma module is $V^{\Lambda_{1}^{2}}$ from a multiplet of subtype \mathcal{L}_{2} for parameter $m=1$. Thus, the character formula is (6.15).
6.2.4. Spin $1 / 2$. Analogously for $s_{0}=1 / 2, E_{0}>1$, we have only the singular vector $v^{\alpha_{1}, 2}$. This is clear for $E_{0} \neq 3 / 2$, while for $E_{0}=3 / 2$ one should note that for $s_{0}=1 / 2$ the singular vector $v^{\alpha_{4}, 1}$ in $(3.24 d)$ is descendant of $v^{\alpha_{1}, 2}$. In fact, for $E_{0} \neq 3 / 2$ the Verma module is $V^{\Lambda_{1}}$ from a multiplet of subtype \mathcal{N}_{1} for parameter $m_{1}=2$, while for $E_{0}=3 / 2$ the Verma module is $V^{\Lambda_{1}^{12}}$ from a multiplet of subtype \mathcal{L}_{1} for parameter $m=1$. Thus, the character formula is (6.15) as in the previous case.
6.2.5. Higher spins. Analogously for $s_{0} \geqslant 1, E_{0}>s_{0}+1$ (cf (3.23b)), we have only the singular vector $v^{\alpha_{1}, m_{1}}, m_{1}=2 s_{0}+1$, since $m_{2}, m_{3}, m_{4} \notin \mathbb{N}$. Thus, the Verma module is $V^{\Lambda_{1}}$ from a multiplet of subtype \mathcal{N}_{1} for parameter $m_{1} \geqslant 3$, and the character formula is (6.15) as in the previous case.
6.2.6. Massless irreps. Finally we consider the massless representations with $E_{0}=s_{0}+1$, $s_{0} \geqslant 1$. We have two singular vectors: $v^{\alpha_{1}, m_{1}}, m_{1}=2 s_{0}+1$, and $v^{\alpha_{4}, 1}$. The signature is $\left(m_{1}, m_{2}, m_{3}, m_{4}\right)=\left(2 s_{0}+1,-2 s_{0}, 1-2 s_{0}, 1\right)$. This signature appears as the Verma module $V_{2 s_{0}-1,1}^{12}$ of the multiplet $\mathcal{F}_{2 s_{0}-1,1}$. Thus, the character formula (found first in [33]) is a special case of (6.20):

$$
\begin{align*}
& \operatorname{ch} L_{\Lambda_{m-2,1}^{12}}=\operatorname{ch} V^{\Lambda_{m-2,1}^{12}}\left(1-\mathrm{e}^{m \alpha_{1}}-\mathrm{e}^{\alpha_{4}}+\mathrm{e}^{m \alpha_{1}+\alpha_{2}}\right) \tag{6.26}\\
& m=m_{1}=2 s_{0}+1
\end{align*}
$$

Thus, the massless UIRs are in one-parameter family of multiplets $\mathcal{F}_{2 s_{0}-1,1}$ where in the Verma modules $V^{\Lambda_{2 s_{0}-1,1}}$ on the top of the multiplets are found the finite-dimensional irreps of dimension: $s_{0}\left(4 s_{0}^{2}-1\right) / 3, s_{0}=1, \frac{3}{2}, \ldots$. For the lowest possible value $s_{0}=1$ the finite-dimensional irrep is the trivial one-dimensional irrep of $\operatorname{so}(5, \mathbb{C})$ (and of $\operatorname{so}(3,2)$).

6.3. Possible applications to integrability

The classical and quantum integrability/solvability of Calogero-Moser-Sutherland systems [52-56] has attracted a lot of attention for the last 30 years. A very important contribution for the group-theoretic understanding was made by Olshanetsky and Perelomov who extended the original models from the A root system to the B, C and D root systems [57, 58]. For a recent overview we refer to [59] and references therein.

For our setting the interesting aspect is the relation between Coxeter groups and integrability of these systems. More specifically, we are interested in the relation of integrable systems to characters of irreps of simple Lie algebras (cf [60] and references therein). To illustrate the possible applications of the results of this paper to integrability we first look at the case of Dirac singletons.

In both singleton cases the character formula is given in (6.19) and involves summation over the group W^{s} which is the direct product of two A_{1} Weyl groups. The group W^{s} can be characterized as generated by the short root reflections s_{1} and s_{3}. Actually, this is a manifestation of a general phenomena since the sets of short and long roots are invariant under the action of the whole Weyl group. Thus, we may also write

$$
\begin{equation*}
W_{B_{2}}^{\text {short }}=W_{A_{1}} \times W_{A_{1}} . \tag{6.27}
\end{equation*}
$$

Thus, irreps for which holds (6.19), in particular, the two Dirac singletons, would be related to integrable systems described by the orbit of short roots of the B_{2} root system [57-59].

The irreps with character formulae (6.15)-(6.18) would be related to integrable systems described by the A_{1} root system.

All the above could also related to different Toda-like models (for a recent review, cf [61]) through their character formulae similarly to the application of Virasoro characters in [62], which should be extendable to the supersymmetry setting [63].

More interesting would be models using character formulae (6.20)-(6.23) since in these cases summation is over subsets of $W_{B_{2}}$ which cannot be considered subgroups of $W_{B_{2}}$. Thus, these would be new models!

Acknowledgments

The author would like to thank for hospitality the Abdus Salam International Center for Theoretical Physics, where part of the work was done. This work was supported in part by the Bulgarian National Council for Scientific Research, grant F-1205/02, the Alexander von Humboldt Foundation in the framework of the Clausthal-Leipzig-Sofia Cooperation, the TMR Network EUCLID, contract HPRN-CT-2002-00325, and the European RTN 'ForcesUniverse', contract MRTN-CT-2004-005104.

References

[1] Aganagic M, Ooguri H, Saulina N and Vafa C 2005 Nucl. Phys. B 715304 (Preprint hep-th/0411280)
[2] Lust D and Tsimpis D 2005 J. High Energy Phys. JHEP02(2005)027 (Preprint hep-th/0412250)
[3] Gauntlett J P, Lee S, Mateos T and Waldram D 2005 J. High Energy Phys. JHEP08(2005)030 (Preprint hep-th/0505207)
[4] Arsiwalla X, Boels R, Marino M and Sinkovics A 2005 Preprint hep-th/0509002
[5] Jafferis D and Marsano J 2005 Preprint hep-th/0509004
[6] Caporaso N, Cirafici M, Griguolo L, Pasquetti S, Seminara D and Szabo R J 2005 Preprint hep-th/0511043
[7] D'Auria R, Ferrara S and Trigiante M 2005 Preprint hep-th/0512248
D'Auria R, Ferrara S and Trigiante M 2006 Proc. 4th Int. Symp. 'Quantum Theory and Symmetries' (Varna, Bulgaria, 15-21 August 2005) ed V K Dobrev (Sofia: Heron)
[8] Ferrara S and Lledo M A 2000 J. High Energy Phys. JHEP05(2000)008 (Preprint hep-th/0002084)
[9] Ferrara S and Sokatchev E 2000 J. High Energy Phys. JHEP05(2000)038 (Preprint hep-th/0003051)
[10] Billo M, Fabbri D, Fre P, Merlatti P and Zaffaroni A 2000 Nucl. Phys. B 591139 (Preprint hep-th/0005220)
[11] Kogan I I, Mouslopoulos S and Papazoglou A 2001 Phys. Lett. B 503173 (Preprint hep-th/0011138)
[12] Cvetic M, Gibbons G W, Hong Lu and Pope C N 2001 Nucl. Phys. B 617151 (Preprint hep-th/0102185)
[13] Delduc F, Ivanov E and Krivonos S 2002 Phys. Lett. B 529233 (Preprint hep-th/0111106)
[14] Porrati M and Starinets A 2002 Phys. Lett. B 53248 (Preprint hep-th/0201261)
[15] Kristiansson F and Rajan P 2003 J. High Energy Phys. JHEP04(2003)009 (Preprint hep-th/0303202)
[16] Leigh R G and Petkou A C 2003 J. High Energy Phys. JHEP06(2003)011 (Preprint hep-th/0304217)
[17] Sakaguchi M and Yoshida K 2004 Nucl. Phys. B 681137 (Preprint hep-th/0310035)
[18] Manvelyan R and Ruhl W 2004 Phys. Lett. B 593253 (Preprint hep-th/0403241) Ruhl W 2005 Phys. Lett. B 605413 (Preprint hep-th/0409252)

Manvelyan R and Ruhl W 2005 Phys. Lett. B 613197 (Preprint hep-th/0412252)
[19] Sezgin E and Sundell P 2005 Preprint hep-th/0511296
Sezgin E and Sundell P 2006 Proc. 4th Int. Symp. 'Quantum Theory and Symmetries' (Varna, Bulgaria, 15-21 August 2005) ed V K Dobrev (Sofia: Heron)
[20] Dirac P A M 1963 J. Math. Phys. 4901
[21] Fronsdal C 1965 Rev. Mod. Phys. 37221
[22] Evans N T 1967 J. Math. Phys. 8170
[23] Fronsdal C 1974 Phys. Rev. D 10589
[24] Fronsdal C 1975 Phys. Rev. D 123819
[25] Flato M and Fronsdal C 1978 Lett. Math. Phys. 2421
[26] Flato M and Fronsdal C 1980 Phys. Lett. B 97236
[27] Flato M and Fronsdal C 1981 J. Math. Phys. 221100
[28] Fronsdal C 1982 Phys. Rev. D 261988
[29] Dobrev V K 1988 Rep. Math. Phys. 25 159-81
[30] Dobrev V K 1985 J. Math. Phys. 26235
[31] Dobrev V K 1985 Lett. Math. Phys. 9205 Dobrev V K 1985 Talk at Conf. on Algebraic Geometry and Integrable Systems (Oberwolfach, 1984) (Trieste: ICTP) (Preprint IC/85/9)
[32] Dobrev V K 1992 J. Math. Phys. 333419 Dobrev V K 1994 Phys. Lett. B 341133
[33] Dobrev V K and Sezgin E 1990 Lecture Notes in Physics vol 379 (Berlin: Springer) p 227
[34] Freedman D Z and Nicolai H 1984 Nucl. Phys. B 237342 Nicolai H and Sezgin E 1984 Phys. Lett. B 143389
[35] Dobrev V K and Sezgin E 1991 Int. J. Mod. Phys. A 64699
[36] Dobrev V K and Moylan P J 1993 Phys. Lett. B 315292
[37] Dolan F A 2005 Character formulae and partition functions in higher dimensional conformal field theory Preprint hep-th/0508031
[38] Dobrev V K 1991 Lett. Math. Phys. 22251
[39] Helgason S 1978 Differential Geometry, Lie Groups and Symmetric Spaces (New York: Academic)
[40] Langlands R P 1973 On the Classification of Irreducible Representations of Real Algebraic Groups (Princeton, NJ: Institute for Advanced Study) (Preprint)
Langlands R P 1989 Representation Theory and Harmonic Analysis on Semisimple Lie Groups (Math. Surveys Monographs vol 31) ed P Sally and D Vogan (Providence, RI: AMS) pp 101-70
[41] Knapp A W and Zuckerman G J 1977 Lecture Notes in Mathematics vol 587 (Berlin: Springer) pp 138-59 Knapp A W and Zuckerman G J 1982 Ann. Math. 116 389-501
[42] Bernstein N N, Gelfand I M and Gelfand S I 1971 Funkts. Anal. Prilozh. 51 Bernstein N N, Gelfand I M and Gelfand S I 1971 Funct. Anal. Appl. 51 (Engl. Transl.)
[43] Dobrev V K, Mack G, Petkova V B, Petrova S G and Todorov IT 1977 Harmonic Analysis on the N-Dimensional Lorentz Group and Its Applications to Conformal Quantum Field Theory (Lecture Notes in Physics vol 63) (Berlin: Springer) p 280
[44] Dobrev V K and Moylan P J in preparation
[45] Ferrara S, Gatto R, Grillo A F and Parisi G 1972 Lett. Nuovo Cimento 4115
[46] Knapp A W and Stein E M 1971 Ann. Math. 93 489-578 Knapp A W and Stein E M 1980 Inv. Math. II 60 9-84
[47] Koller K 1975 Commun. Math. Phys. 4015
[48] Gelfand I M and Shilov G E 1964 Generalised Functions vol 1 (New York: Academic)
[49] Dobrev V K and Petkova V B 1978 Rep. Math. Phys. 13233
[50] Dixmier J 1977 Enveloping Algebras (New York: North-Holland)
[51] Kac V G 1990 Infinite Dimensional Lie Algebras 3rd edn (Cambridge: Cambridge University Press)
[52] Calogero F 1971 J. Math. Phys. 12419
[53] Sutherland B 1972 Phys. Rev. A 51372
[54] Moser J 1975 Adv. Math. 16 197-220 Moser J 1975 Dynamical Systems, Theory and Applications (Lecture Notes in Physics vol 38) (Berlin: Springer)
[55] Calogero F, Marchioro C and Ragnisco O 1975 Lett. Nuovo Cimento 13383
[56] Calogero F 1975 Lett. Nuovo Cimento 13411
[57] Olshanetsky M A and Perelomov A M 1976 Inv. Math. 3793
[58] Olshanetsky M A and Perelomov A M 1981 Phys. Rep. 71314
[59] Sasaki R and Takasaki K 2005 Preprint hep-th/0510035
[60] Nunez J F, Fuertes W G and Perelomov A M 2004 Preprint math-ph/0406067
[61] Corrigan E 2004 Preprint math-ph/0411043
[62] Bytsko A G and Fring A 1999 Phys. Lett. B 45459 (Preprint hep-th/9812115)
[63] Dobrev V K 1987 Phys. Lett. B 18643
Dobrev V K 1987 Suppl. Rend. Circolo Mat. Palermo: Serie II, Numero 1425
Dobrev V K and Ganchev A Ch 1988 Mod. Phys. Lett. A 3127

[^0]: ${ }^{1}$ Note that often are used the generators $M_{A B}=\mathrm{i} X_{A B}$.

[^1]: 2 It is different from that in [34] which we used in [33].

